本文的结构是对AI对数字分类法和物种识别的影响进行全面分析。第2节探讨了物种识别中AI的技术基础,包括机器学习体系结构,计算机视觉应用和分类分类的自然语言处理[13]。第3节重点介绍了AI在生态监测中的作用,重点是生物多样性调查,入侵物种检测和环境DNA(EDNA)分析[14]。第4节深入研究了数字系统学中AI的整合,讨论了自动分类,系统发育分析和分类学标准化[15]。第5节研究了AI驱动的分类法中的数据偏见,模型解释性和道德考虑等关键挑战[16]。
项目摘要:2022年,陶朗加市议会在向社区询问其对城市的价值观和希望之后,采用了对陶朗加的愿景。这次咨询的最高优先事项是保护和增强自然环境;因此,三个确定的关键支柱中的第一个是“环境 - 优先考虑自然”。具体的目标是在我们社区的核心中具有繁荣的自然和生物多样性,并将大自然带回城市。Tauranga具有一些出色的自然特征,从Kaimai到港口和海洋的生态走廊很棒。有些人得到了很好的照顾,但是有些人需要帮助,如果我们更多地了解如何将剩余的高质量植被与繁荣的途径联系起来,也可能会开始壮成长。了解我们可以最好地以计划的形式将我们的精力和金钱重点放在何处,然后进行良好的维护和恢复过程,这是实现将自然重新回到我们城市的总体目标的关键。调查和报告已由大量地区委员会和保护部的宏观层面上完成,提供了更高级别的参考材料,但是需要在微观层面上进行更详细的参考材料,以确定提高连接性的最佳机会。,您将把过去的研究结合到有关陶朗加生态学的本地研究图书馆中,以确定城市占领的人类前定居点的过去生态状态。您还将使用调查和环境DNA(EDNA)样品进行本地现场工作,以识别和绘制植物群。该项目的输出将包括对潜在的生态走廊的识别和EDNA数据的初步分析,这有助于对陶朗加目标的更广泛的愿景,以优先考虑我们城市的自然。
通过将来自多个季节性样本的Edna片段序列与来自所有已知物种的大型参考序列数据库进行比较,研究人员能够检测到整个生命之树的生物。他们估计,奇利卡泻湖的总分类学多样性在整个生命之树中约为1071个家庭,包括大约799个真核生物家族,230个细菌家庭,27个古细菌家庭和13个DNA病毒家族。研究人员还发现,生态系统中不同位置和季节的生物家庭的相对丰度差异很大。这表明该方法还可以帮助监视跨空间和时间的生物多样性的变化。
(a) 快速评估从开始到结束的预计时间框架是什么? (b) 快速评估应在现场进行还是可以在实验室分析样本?与目前通常需要几天时间才能产生结果的方法相比,快速评估方案应减少所需时间。申请人可以根据其提案的方法,自由提出现场评估或收集样本的实验室分析。 T9.2 参考征集主题的技术可交付成果“为本地物种开发一个 eDNA 条形码库,该库通过特定地点的实地采样进行验证,用于生物多样性保护和管理,并提高 GenBank 和 BOLDSystems 等全球 DNA 序列库中物种身份的准确性”(2025 年 1 月 28 日)–
fi g u r e 4在这三个区域中的每个区域中观察到了物种丰富度。根据形态测定(红色色调)和Edna metabarcoding(蓝色色调)检测到的鱼(右)和无脊椎动物(左)物种(蓝色色调),根据鱼(右)和无脊椎动物(左)物种计算了观察到的物种丰富度。包括所有鱼类和无脊椎动物物种时,较浅的颜色是指物种丰富度,而较深的颜色是指在仅考虑塞尔斯鱼类物种时观察到的物种丰富度。盒子是从第一个四分位数到第三四分位数的,黑线代表中位数。晶须代表大小和小于第三四分位数的1.5倍的值。黑点是超出晶须范围的异常值。
海带修复是Ocean Wise的Seaforestation计划的主要支柱。Ocean Wise和Canadian海带资源(CKR),Rendezvous Dive Adventures共同努力,在Barkley Sound的Rainy Bay建立了海带恢复示范地点。具体来说,在2021年后半段,CKR在雨湾生产和植入了三种海带的绿色砾石。研究物种包括:巨型海带(大环藻),公牛海带(Nereocystis luetkeana)和Sugar Kelp(Saccharina latissima)。该实验的成功将在2022年和2023年进行评估,重点是了解海带恢复的生物多样性益处。我们在加拿大温哥华岛的Barkley Sound中使用Edna为此目的。与潜水样品相比,我们在这里评估了该方法的有效性和效率,以鉴定物种组成。
Agersnap, S.、Sigsgaard, EE、Jensen, MR、Avila, MDP、Carl, H.、Møller, PR、Krøs, SL、Knudsen, SW、Wisz, MS 和 Thomsen, PF (2022)。利用公民科学和 eDNA 宏条形码监测沿海海洋鱼类的国家级“生物多样性调查”。海洋科学前沿,第 9 卷,第 1-17 页。Altschul, SF、Gish, W.、Miller, W.、Myers, EW 和 Lipman, DJ (1990)。基本局部比对搜索工具。分子生物学杂志,第 215 卷,第 403-410 页。Ashelford, KE、Chuzhanova, NA、Fry, JC、Jones, AJ 和 Weightman, AJ (2005)。据估计,目前公共存储库中保存的 20 个 16S rRNA 序列记录中至少有 1 个包含大量异常。应用与环境微生物学,71,7724–7736。Auster, PJ (2005)。深水珊瑚是鱼类的重要栖息地吗?在 A. Freiwald 和 JM Roberts(编辑),冷水珊瑚和生态系统(第 747–760 页)。Springer Berlin Heidelberg。https://doi. org/10.1007/3–540–27673-4 Beng, KC 和 Corlett, RT (2020)。环境 DNA (eDNA) 在生态学和保护中的应用:机遇、挑战和前景。生物多样性与保护,29,2089–2121。Benson, DA (2004)。GenBank。核酸研究,33,34–38。Bessey, C.、Neil Jarman, S.、Simpson, T.、Miller, H.、Stewart, T.、Kenneth Keesing, J. 和 Berry, O. (2021)。被动式 eDNA 收集可增强水生生物多样性分析。通讯生物学,4,236。Brandt, MI、Pradillon, F.、Trouche, B.、Henry, N.、Liautard-Haag, C.、Cambon-Bonavita, MA、Cueff-Gauchard, V.、Wincker, P.、Belser, C.、Poulain, J.、Arnaud-Haond, S. 和 Zeppilli, D. (2021)。评估使用环境 DNA 估计深海生物多样性的沉积物和水采样方法。科学报告,11,7856。 Brodnicke, O.、Meyer, H.、Busch, K.、Xavier, J.、Knudsen, S.、Møller, P.、Hentschel, U. 和 Sweet, M. (2022)。出版物的采样元数据:“深海海绵衍生的环境 DNA 分析揭示了偏远北极生态系统的底栖鱼类生物多样性”。Zenodo。https://doi.org/10.5281/zenodo.7326708 Burian, A.、Mauvisseau, Q.、Bulling, M.、Domisch, S.、Qian, S. 和 Sweet, M. (2021)。提高 eDNA 数据解释的可靠性。分子生态资源,21,1422–1433。 Busch, K., Beazley, L., Kenchington, E., Whoriskey, F., Slaby, BM, & Hentschel, U. (2020). 玻璃海绵 Vazella pourtalesii 的微生物多样性对人类活动的响应。保护遗传学,21,1001–1010。Busch, K., Hanz, U., Mienis, F., Mueller, B., Franke, A., Roberts, EM, Rapp, HT, & Hentschel, U. (2020). 站在巨人的肩膀上:海山如何影响海水和海绵的微生物群落组成。生物地球科学,17,3471–3486。 Busch, K.、Slaby, BM、Bach, W.、Boetius, A.、Clefsen, I.、Colaço, A.、Creemers, M.、Cristobo, J.、Federwisch, L.、Franke, A.、Gavriilidou, A.,Hethke, A., Kenchington, E., Mienis, F., Mills, S., Riesgo, A., Ríos, P., Roberts, EM, Sipkema, D., … Hentschel, U. (2022)。全球深海海绵微生物组的生物多样性、环境驱动因素和可持续性。《自然通讯》,第 13 卷,第 5160 页。Cai, W., Harper, LR, Neave, EF, Shum, P., Craggs, J., Arias, MB, Riesgo, A., & Mariani, S. (2022)。圈养海绵中的环境 DNA 持久性和鱼类检测。《分子生态资源》,第 22 卷,第 2956-2966 页。Callahan, BJ, McMurdie, PJ, Rosen, MJ, Han, AW, Johnson, AJA, & Holmes, SP (2016)。 DADA2:从 Illumina 扩增子数据进行高分辨率样本推断。《自然方法》,13,581–583。Cárdenas, P.、Rapp, HT、Klitgaard, AB、Best, M.、Thollesson, M. 和 Tendal, OS (2013)。分类学、生物地理学和 DNA 条形码
环境 DNA (eDNA) 和 RNA (eRNA) 宏条形码已成为评估环境样本生物多样性的常用工具,但方法、数据和元数据的记录不一致使得结果难以重现和综合。一个科学家工作组合作制定了一套最低限度的报告指南,涵盖宏条形码工作流程的组成步骤,从实验室的物理布局到数据归档。我们强调报告数据和元数据套件应遵循可查找、可访问、可互操作和可重现 (FAIR) 数据标准,从而为评估和理解研究结果提供背景。概述了每个工作流程步骤的记录注意事项,然后在可随已发表的研究或报告一起提供的清单中进行了总结。确保工作流程透明且有记录对于可重现的研究至关重要,并且应允许更有效地将宏条形码数据纳入管理决策。
fi g u r e 1基于VAE方法的图表应用于EDNA数据(VAESEQ)。该模型由一个自动编码器(AE)和一个变异自动编码器(VAE)组成。AE将每个MOTU的遗传序列信息与每个样品中每个MOTU的存在/不存在相结合,以生成第一个潜在编码Z AE。然后将此信息传递给一个编码层的VAE。因此,在每次迭代中,VAE接收到一个样品中每个MOTU检测到的序列的输入,并且嵌入Z AE的自动编码器。vae处理两个输入,并将样品的维度降低到二维潜在空间z vae。在z vae中,我们找到了所有数据点的2D表示(图S3A,b)。在解码部分中,VAE重建了两个输入,以相应地优化网络。
艾伦·贝斯特(Allen Best)上周在弗雷泽(Fraser)的下面达到19,位于丹佛(Denver)西北的弗雷泽(Fraser),位于同名山谷。温度引起了很多本地谈话。情况如何变化。该镇毗邻温特帕克(Winter Park),但在25年成立的长老具有深厚的寒冷传统。在1960年代,经常被晨广播电台报道 - 这是电视真正进入早晨广播的游戏之前,这是全国最深的一夜寒冷。(在我记忆中脱颖而出的其他地方:加利福尼亚州的Truckee和明尼苏达州的国际瀑布,较少的是科罗拉多州的阿拉莫萨)。丹佛Koa的气象鲍曼(Weatherman Bowman) - 那时没有麦克风的女性 - 将其称为国家的冰箱。这些温度是一对夫妇,罗恩(Ron)和埃德娜·塔克(Edna Tucker)坚定不移的结果。他们轮流起床