该项工作部分由国家重点研发计划(2017YFA0303700)资助,部分由广东省重点研发计划(2018B030325002)资助,部分由国家自然科学基金(11974205)资助,部分由北京未来芯片高精尖创新中心(ICFC)资助。 Dong Pan 的工作得到了中国国家留学基金委 (CSC) 资助 (资助编号 201806210237)。Lajos Hanzo 的工作部分得到了英国工程与物理科学研究理事会 (COALESCE) 项目 (EP/N004558/1、EP/P034284/1、EP/P034284/1 和 EP/P003990/1) 的资助,部分得到了英国皇家学会全球挑战研究基金的资助,部分得到了欧洲研究理事会 QuantCom 高级研究员基金的资助。
1935 年,爱因斯坦、波多尔斯基和罗森 (EPR) 提出了一个量子理论悖论 [ Phys. Rev. 47 , 777 (1935) ]。他们考虑了两个量子系统,最初允许它们相互作用,后来它们分离。对一个系统进行的物理可观测量必须立即影响另一个系统中的共轭可观测量 — — 即使两个系统之间没有因果关系。作者认为这是量子力学不一致性的一个明显表现。在 Bjorken、Feynman 和 Gribov 提出的核子部分子模型中,部分子(夸克和胶子)被外部硬探针视为独立的。标准论点是,在被提升到无限动量框架的核子内部,在硬相互作用过程中,具有虚拟性 Q 的虚拟光子探测到的部分子与核子的其余部分没有因果关系。然而,由于色限制,部分子和其余核子必须形成色单重态,因此必须处于强关联量子态——因此我们在亚核子尺度上遇到了 EPR 悖论。在本文中,我们提出了一种基于部分子量子纠缠的解决这一悖论的方法。我们设计了一种纠缠实验测试,并使用大型强子对撞机的质子-质子碰撞数据进行测试。我们的结果为亚核子尺度上的量子纠缠提供了强有力的直接指示。
b'对于刚才描述的情况,我们更喜欢使用术语 \xe2\x80\x9c 不可分离状态。\xe2\x80\x9d 要了解原因,我们必须研究纠缠与不可分离性之间的关系。量子力学的基本原理是任何纠缠态的波函数必然是不可分离的。例如,考虑量子态 | \xcf\x88\xe2\x8c\xaa = (| \xe2\x8c\xaa 1 | \xe2\x8c\xaa 2 \xe2\x88\x92 | \xe2\x8c\xaa 1 | \xe2\x8c\xaa 2 )/ 2,其中 | \xe2\x8c\xaa 1 表示粒子 1 处于量子态 ,另一个(空间上分离的)粒子 2 处于状态 ,其他量也是如此。状态 \xcf\x88 具有这样的属性,即如果对粒子 1 的测量显示它处于状态 ,那么对粒子 2 的测量肯定会显示它处于状态 ,反之亦然。尽管如此,在进行任何测量之前,每个粒子处于状态 或 的概率都是相等的。虽然所有纠缠态都是不可分离的,但我们认为,所有不可分离状态都是纠缠的并不正确(见图)。我们不想用纠缠来描述不可分离状态,因为在这种情况下没有非局域性的意义。事实上,没有一个经典系统能够产生真正的量子纠缠,即爱因斯坦所说的\xe2\x80\x9c 鬼魅般的超距作用。\xe2\x80\x9d'
出于您的人身安全、产品寿命和产品责任的考虑,我们想强调以下几点的重要性。请勿在潮湿的地方或附近使用放大器 请勿将放大器存放在潮湿的地方 请勿在放大器后面板指定电压以外的电压下操作放大器。请勿打开放大器的面板。里面没有用户可维修的部件。您的 Einstein 在非常高的内部电压下运行,在放大器关闭并断开连接一段时间后,这些电压可能仍然存在。请勿将放大器用于其设计用途以外的任何用途:放大电吉他信号 请勿使用放大器专用和指定的保险丝以外的保险丝 请勿为此设备使用 2 芯延长线或 3 极接地插座以外的任何设备。您的生命可能取决于它!
原子移离平衡位置后,原子核会从电子云中移开。光子的电场会与原子核(电子云偶极子)产生共振(场是附加的),从而被吸收。硅、锗等共价材料往往是较差的光吸收剂。需要晶格振动才能在晶体中诱导偶极子,然后光才能被吸收=间接间隙。