密码系统的示例是:DES,3DES,IDEA,RSA,ELGAMAL,PGP等。消息的原始形式称为纯文本,加密形式称为密码文本。加密数据的安全性完全取决于两件事:加密算法的强度和密钥的保密性。加密算法,加上所有可能的密钥以及使其正常工作的所有协议,包括一个加密系统或加密方案。加密是密码系统构建的科学。密码学是密码学和密码分析的科学。密码分析是破坏密码系统的数学技术科学。隐肌是隐藏对象内部信息的科学 /艺术。密码学可以理解为crypt = secret and Graph =写入术语可以理解为stega = hidden and graph = graph =写作示例:在文本文件中隐藏消息。在图像文件中隐藏版权标记。图片中隐藏消息。隐藏图片中的声音。传统上,密码学主要用于军事和外交目的,但是,近年来,加密系统的加密系统的实际和潜在应用已扩展到包括许多其他领域,这些领域在许多其他领域中发挥了至关重要的作用 - 收集并保留机密数据,电子金融交易的记录,等等。一个隐性药物的任务是打破加密,这意味着隐ryptanalyst试图推断密码文本消息的含义,或者确定与加密算法匹配的解密算法。
随着越来越多的人使用计算机网络来交换声明文档,购买产品和访问敏感数据,对公共钥匙加密和数字签名的需求正在迅速传播。实际上,如果没有安全且有效的公开密码学的可用性,这些任务中的几个是无法实现的。鉴于公共密钥密码学的重要性,令人惊讶的是,相对较少的公共密钥密码系统提出的提议受到了任何关注。此外,这些建议的安全来源几乎始终依赖于有限整数中问题的(明显)计算棘手性,特定的整数分解(例如[20,19等)和离散对数计算(例如[8、9、7等])。在本文中,我们提出了一个新的陷阱门单向功能,该功能依赖于晶格还原问题的计算困难,尤其是在晶格中找到最接近向量到给定点(CVP)的问题。从此捕获器功能中,我们得出了一种公钥加密和数字签名方法。这些方法在渐近上比RSA和Elgamal加密方案更有效率,因为在自然安全参数中,加密,解密,签名和验证的计算时间都是二次的。公共密钥的大小比这些系统更长。特别是,对于安全参数k,新系统具有大小o的公共密钥(k
技能和经验全栈开发:Typescript/ htmx/ node/ go/ svelte/ svelte/ flutter/ remix/ nextjs/ django ai开发:python/ tensorflow平台(Cloudflare/ aws/ aws/ firebase/ supabase):dashboard Management and Clis。Amazon AWS - S3,EC2,RDS,Lambda,MapReduce,Memcached,Ses,Cloudfront等功能 / FRP:精通功能和功能反应性编程,以声明的方式解决算法问题。敏捷:由苏格兰精益敏捷的创始人培训,并通过培训和指导帮助大型企业实施敏捷原则。Testing: Cypress, React-Testing, Mocha, Chai, Jasmine, Ava, Sinon, Cucumber, PhantomJS, CircleCI, Jenkins Programming languages: TYPESCRIPT / JAVASCRIPT / CLOJURE / HTML5 / CSS3 / TAILWIND SQL RDBMS (POSTGRES / MYSQL) PYTHON / PERL / BASH / PHP JAVA / C / C++ / QT Programming Software: VSCode / Zed / VIM Operating Systems: Mac OSX / Linux (Ubuntu / Debian) / Microsoft Windows Algorithmic skills: Physics engines, Numerical methods Particle solvers, fluid solvers, rigid body dynamics DSP (FFT, DCT, JPEG, 3D JPEG) Compression (JPEG, 3D JPEG, Fractals, 3D Fractals)密码学(RSA,Elgamal,Diffie-Hellman,Eternity/Shuffle(自己的发明))项目管理:经营自己的公司(Continuata),为30个世界领先的音乐样本图书馆制造商提供数字产品分销。沟通技巧:与客户在与非技术经理进行技术发展的销售和技术支持方面进行处理。公开演讲和讲课。创造力:
在1976年,W。Dioure和M. E. Hellman [12]设定了公共密钥密码学的定义和原则。两年后,RSA公共密钥密码系统由R. L. Rivest,A。Shamir和L. Adleman [34]发明。这些事件不仅在秘密通信中开设了一个新时代,而且标志着数学密码学的诞生1。从那时起,已经连续发现了其他几个数学加密系统,包括Elgamal Cryptosystem,椭圆曲线加密系统,Ajtai-Dwork加密系统,GGH加密系统,NTRU密码系统和LWE CRYP-TOSOSYSTEM和LWE CRYP-TOSOSYSTEM。在过去的半个世纪中,数学密码学(公共密钥密码学)在计算机和互联网的现代技术中发挥了至关重要的作用。同时,它已发展为数学和密码学之间的积极跨学科研究(见[18,20])。在Di-e-Hellman 2之前,任何秘密通信的分解过程和解密过程都使用了相同的秘密密钥。这种密码称为对称密码。假设鲍勃想向爱丽丝传达秘密信息,他们必须分享一个秘密钥匙k。鲍勃首先将密钥k的消息m拼凑到密文C上,然后通过某个频道将其发送到爱丽丝。当爱丽丝收到密文C时,她使用秘密键K将其解开并重新构成M。在此过程中,如果通信渠道不安全,则他们的对手前夕不仅可以拦截Ciphertext C,还可以拦截秘密密钥K,然后重建其秘密消息m。
一种变形加密方案允许两个方共享所谓的双键,以嵌入秘密消息的封闭消息,以已建立的PKE方案的密文。这可以防止一个独裁者,该独裁者可以迫使接收者揭示PKE计划的秘密钥匙,但谁对双密钥的存在不明智。我们确定了波斯安诺,潘和杨的原始模型的两个局限性(Eurocrypt 2022)。首先,在其定义中,只能生成一次双密钥,以及一个键对。这是一个缺点,即独裁者上台后想要使用变形模式的接收者需要部署新的密钥对,这是一种潜在的可疑行为。第二,接收者无法区分密文是否包含秘密消息。在这项工作中,我们提出了一个克服这些局限性的新模型。首先,我们在部署后允许将多个双键与密钥对相关联。,如果双键仅取决于公共密钥,这也可以实现可否认性。第二,我们提出了一个自然的鲁棒性概念,该概念确保解密定期加密的消息会导致一个特殊的符号,表明没有隐秘消息,这也消除了某些攻击。最后,为了实例化我们对变形加密的新的,更强的定义,我们提供了通用和具体的构造。具体而言,我们表明,Elgamal和Cramer-shoup满足了一种新的条件,选择性的随机性可恢复性,从而实现了强大的变形扩展,并且我们还为RSA-OAEP提供了强大的变形式扩展。
摘要 :当代密码算法能够抵御最严重的网络安全威胁和引人注目的网络攻击。近年来,信息安全科学家和研究人员已经开发出各种密码方案,能够抵御使用最复杂(就处理器速度而言)的经典计算机进行的攻击。然而,随着量子计算机的出现,这种抵抗力很快就会消失。在本文中,我们根据人们普遍认为量子计算机和量子算法对当前安全的密码原语的威胁对其进行了分析。我们发现,Grover 和 Shor 的基于量子的算法实际上分别对对称密码系统(例如 128 位 AES)和非对称(公钥)密码系统(例如 RSA、Elgamal、椭圆曲线 Diffie Hellman (ECDH) 等)的持续安全性构成了威胁。我们发现,这些算法之所以比当前系统更具有密码分析能力,是因为它们(Grover 和 Shor)都为各自的算法配备了量子电路组件,可以通过将单个电路应用于 n 量子位输入的所有可能状态来并行执行 oracle。量子计算机和基于量子的算法具有这种指数级的处理能力,因此当前的密码系统很容易被破解,因为这些算法可以解决底层数学问题,例如整数分解、离散对数问题和椭圆曲线问题,这些问题构成了受影响密码系统安全性的基础。基于这一认识,作为我们为后量子时代做好准备的一部分,我们探索了其他数学结构(格、哈希、代码、同源性、基于高熵的对称密钥抗性和多元二次问题),这些结构的难度可能超过量子计算机和基于量子的算法所带来的密码分析噩梦。我们的贡献是,基于这项研究的结果,我们可以自信地断言,对于严重依赖 HTTPS、TLS、PGP、比特币等协议和应用程序的组织来说,一切希望都没有破灭,这些协议和应用程序的安全性源自濒临灭绝的密码系统。 稿件于 2023 年 5 月 6 日收到 | 修订稿件于 2023 年 5 月 13 日收到 | 稿件于 2023 年 6 月 15 日接受 | 稿件于 2023 年 6 月 30 日发布。 * 通信作者
[1] TSMC研究领域 /记忆。https://research.tsmc.com/page/memory/4.html。 [2] J. Abrell,M。Kosch和S. Rausch。 使用可再生能源的碳减排:评估德国和西班牙的风和太阳补贴。 公共经济学杂志,169:172–202,2019。 [3] B. Acun,B。Lee,F。Kazhamiaka,K。Maeng,U。Gupta,M。Chakkaravarthy,D。Brooks和C. Wu。 碳资源管理器:设计碳吸引数据中心的整体框架。 in proc。 Asplos,2023。 [4] Argonne国家实验室。 问候。 https://greet.es.anl.gov,2022。 [在线;访问30-May-20122]。 [5] L. Barroso,J。 Dean和U. Holzle。 Web搜索一个星球:Google群集体系结构。 IEEE Micro,23(2):22–28,2003。 [6] Minoret,C。Ribière,G。Romero,P.-E。 Philip,Y。Exbrayat,D。Scevola,D。Campos,M。Argoud,N。Allouti,R。Eleouet,C。FuguetTortolero,C。Aumont,D。Dutoit,C。Legalland,J。Michailos,S.Chéramy和G. Simon。 用于基于芯片的高级3D系统体系结构的主动插座技术。 IEEE第69电子组件和技术会议(ECTC),第569–578页,2019年。 [7] J. Dodge,T。Prewitt,R。Tachetdes Combes,E。Odmark,R。Schwartz,E。Strubell,A。S。Luccioni,N。A。Smith,N。Decario和W. Buchanan。 计算机协会。 Wu。https://research.tsmc.com/page/memory/4.html。[2] J. Abrell,M。Kosch和S. Rausch。使用可再生能源的碳减排:评估德国和西班牙的风和太阳补贴。公共经济学杂志,169:172–202,2019。[3] B. Acun,B。Lee,F。Kazhamiaka,K。Maeng,U。Gupta,M。Chakkaravarthy,D。Brooks和C. Wu。碳资源管理器:设计碳吸引数据中心的整体框架。in proc。Asplos,2023。[4] Argonne国家实验室。 问候。 https://greet.es.anl.gov,2022。 [在线;访问30-May-20122]。 [5] L. Barroso,J。 Dean和U. Holzle。 Web搜索一个星球:Google群集体系结构。 IEEE Micro,23(2):22–28,2003。 [6] Minoret,C。Ribière,G。Romero,P.-E。 Philip,Y。Exbrayat,D。Scevola,D。Campos,M。Argoud,N。Allouti,R。Eleouet,C。FuguetTortolero,C。Aumont,D。Dutoit,C。Legalland,J。Michailos,S.Chéramy和G. Simon。 用于基于芯片的高级3D系统体系结构的主动插座技术。 IEEE第69电子组件和技术会议(ECTC),第569–578页,2019年。 [7] J. Dodge,T。Prewitt,R。Tachetdes Combes,E。Odmark,R。Schwartz,E。Strubell,A。S。Luccioni,N。A。Smith,N。Decario和W. Buchanan。 计算机协会。 Wu。[4] Argonne国家实验室。问候。https://greet.es.anl.gov,2022。 [在线;访问30-May-20122]。 [5] L. Barroso,J。 Dean和U. Holzle。 Web搜索一个星球:Google群集体系结构。 IEEE Micro,23(2):22–28,2003。 [6] Minoret,C。Ribière,G。Romero,P.-E。 Philip,Y。Exbrayat,D。Scevola,D。Campos,M。Argoud,N。Allouti,R。Eleouet,C。FuguetTortolero,C。Aumont,D。Dutoit,C。Legalland,J。Michailos,S.Chéramy和G. Simon。 用于基于芯片的高级3D系统体系结构的主动插座技术。 IEEE第69电子组件和技术会议(ECTC),第569–578页,2019年。 [7] J. Dodge,T。Prewitt,R。Tachetdes Combes,E。Odmark,R。Schwartz,E。Strubell,A。S。Luccioni,N。A。Smith,N。Decario和W. Buchanan。 计算机协会。 Wu。https://greet.es.anl.gov,2022。[在线;访问30-May-20122]。[5] L. Barroso,J。Dean和U. Holzle。Web搜索一个星球:Google群集体系结构。IEEE Micro,23(2):22–28,2003。[6] Minoret,C。Ribière,G。Romero,P.-E。 Philip,Y。Exbrayat,D。Scevola,D。Campos,M。Argoud,N。Allouti,R。Eleouet,C。FuguetTortolero,C。Aumont,D。Dutoit,C。Legalland,J。Michailos,S.Chéramy和G. Simon。用于基于芯片的高级3D系统体系结构的主动插座技术。IEEE第69电子组件和技术会议(ECTC),第569–578页,2019年。[7] J.Dodge,T。Prewitt,R。Tachetdes Combes,E。Odmark,R。Schwartz,E。Strubell,A。S。Luccioni,N。A。Smith,N。Decario和W. Buchanan。计算机协会。Wu。在云实例中测量AI的碳强度。在2022年ACM公平,问责制和透明度会议上,FACCT '22,第1877- 1894页,纽约,纽约,纽约,2022年。[8] H. M. El-Houjeiri,A。R。Brandt和J. E. Duffy。使用现场特征估算原油生产中的温室气体排放的开源LCA工具。环境科学技术,47 11:5998–6006,2013。[9] S. Fan,S。Zahedi和B. Lee。计算冲刺游戏。Asplos,2016年。[10] X.粉丝,W.-D。韦伯和L. Barroso。仓库比例计算机的功率供应。在ISCA,2007年。 [11] C. Freitag,M。Berners-Lee,K。Widdicks,B。Nowles,G。S。Blair和A. Friday。 ICT的真正气候和变革性影响:对估计,趋势和法规的批评。 模式,2(9),2021。 [12] B. Ghorbani,O。Firat,M。Freitag,A。Bapna,M。Krikun,X。Garcia,C。Chelba和C. Cherry。 神经机器翻译的缩放定律。 在国际学习表征会议上,2022年。 [13] K. Gillingham,D。Rapson和G. Wagner。 反弹效应和能源效率政策。 审查环境经济与政策,2016年10月1日。 [14] U. Gupta,M。Elgamal,G。Hills,G.Y。 Wei,H.-H。 S. Lee,D。Brooks和C.-J。 ACT:使用建筑碳建模工具设计可持续的计算机系统。 在ISCA,2022年。 [15] U. Gupta,Y。G. Kim,S。Lee,J。Tse,H。H. S. Lee,G.-Y. Wei,D。Brooks和C. J. Wu。在ISCA,2007年。[11] C. Freitag,M。Berners-Lee,K。Widdicks,B。Nowles,G。S。Blair和A. Friday。ICT的真正气候和变革性影响:对估计,趋势和法规的批评。模式,2(9),2021。[12] B. Ghorbani,O。Firat,M。Freitag,A。Bapna,M。Krikun,X。Garcia,C。Chelba和C. Cherry。神经机器翻译的缩放定律。在国际学习表征会议上,2022年。[13] K. Gillingham,D。Rapson和G. Wagner。反弹效应和能源效率政策。审查环境经济与政策,2016年10月1日。[14] U. Gupta,M。Elgamal,G。Hills,G.Y。Wei,H.-H。 S. Lee,D。Brooks和C.-J。 ACT:使用建筑碳建模工具设计可持续的计算机系统。 在ISCA,2022年。 [15] U. Gupta,Y。G. Kim,S。Lee,J。Tse,H。H. S. Lee,G.-Y. Wei,D。Brooks和C. J. Wu。Wei,H.-H。 S. Lee,D。Brooks和C.-J。ACT:使用建筑碳建模工具设计可持续的计算机系统。在ISCA,2022年。[15] U. Gupta,Y。G. Kim,S。Lee,J。Tse,H。H. S. Lee,G.-Y.Wei,D。Brooks和C. J. Wu。追逐碳:计算的难以捉摸的环境足迹。在HPCA中,2021年。[16] G. Hardin。公地的悲剧。Science,162(3859):1243–1248,1968。[17] G. Hills,M。García-Bardón,G。Doornbos,D。Yakimets,P。Schuddinck,R。Baert,D。Jang,L。Mattii,S。M。M. Y. Sherazi,D.Rodopoulos,D.Rodopoulos,R.RiTzenthaler,C.S. Lee,A。V.-Y.Thean,I。Radu,A。Spessot,P。Bebacker,F。Catthoor,P。Raghavan,M。Shulaker,H.-S。 P. Wong和S. Mitra。了解数字VLSI的碳纳米管现场效应晶体管的能效益处。IEEE纳米技术交易,17(6):1259–1269,2018年9月。