图1:提议的框架概述。该过程始于利用蛋白质氨基酸序列和配体微笑弦作为输入。构象采样过程包括迭代应用输入特征,更新残留特征并脱落等效,最终在其辅导的Cα蛋白质主链和配体配合物以及其辅导中产生了新型蛋白质序列。
摘要。存在许多具有对称性的系统的示例,并且可以通过具有对称性的控件进行监视。由于沿进化保留了对称性,因此不可能完全可控,并且必须将可控性视为具有相同对称性的状态的内部。我们证明,具有对称性的通用系统在这个意义上是可以控制的。该结果具有多种应用,例如:(i)当粒子之间相互作用的内核扮演均值场控制的作用时,粒子系统的一般可控性; (ii)在具有边界的歧管上对向量场的家庭的一般可控性; (iii)具有“通用”自发型层的神经网络体系结构的通用介绍 - 在最近的神经网络体系结构中,例如在变形金刚体系结构中的一种无处不在的层。我们开发的工具可以帮助解决模棱两可系统控制的其他各种问题。
摘要:构建有效的模仿学习方法,使机器人能够从有限的数据中学习,并且仍然在不同的现实世界环境中概括是一个长期存在的问题。我们提出了Equibot,一种可用于机器人操纵任务学习的强大,有效且可推广的方法。我们的方法结合了SIM(3) - 等级神经网络体系结构与扩散模型。这确保了我们所学的政策对规模,轮换和翻译的变化是不变的,从而增强了它们对看不见的环境的适用性,同时保留了基于扩散的政策学习的好处,例如多种方式和鲁棒性。我们在一组6项模拟任务上显示,我们提出的方法减少了数据要求并改善对新方案的概括。在现实世界中,有10个移动操作任务的10个变体,我们表明我们的方法可以轻松地概括为每项任务中仅5分钟的人类演示的新颖对象和场景。网站:https://equi-bot.github.io/
摘要 - 本文提出了一种差异几何控制方法,该方法利用了SE(3)组不变性和等效性,以提高学习机器人操纵任务中涉及与环境相互作用的可传递性。所提出的方法是基于利用最近提出的几何阻抗控制(GIC)与学习变量阻抗控制框架相结合的,在该框架中,增益计划策略是从专家辩护中以监督的学习方式培训的。几何一致的误差向量(GCEV)被馈送到神经网络以实现增益计划策略。我们证明,使用GCEV的GIC和学习表示在任意SE(3)转换(即翻译和旋转)下仍然不变。此外,我们表明,相对于空间框架表示,所提出的方法是均等的。对我们提出的控制和学习框架与配备笛卡尔错误矢量增益计划策略的著名的笛卡尔太空学习阻抗控制的比较,证实了我们所提出的方法的出色学习转移性。索引术语 - 几何阻抗控制,SE(3)等效性和剩余不变性,可变阻抗控制,接触式操纵任务
在大规模模拟中,由于量子方法的数值成本很高,原子之间的相互作用通常不能从第一个原理计算。相反,它们通常是使用力ELDS(FFS)对势能的物理动机功能形式进行建模的,并进行参数化以匹配从头算能的能量和/或再现实验数据。最广泛的FF是所谓的经典力eLS(例如Amber 1或Charmm 2),它们结合了XED-Charge Colomb电位和Lennard-Jones的相互作用来模拟分子间电位。这些模型在数值上非常有效,可以在长期尺度上模拟非常大的系统。然而,它们的简单功能形式缺乏极化和多体效应,这对于正确描述某些系统至关重要(例如在极性溶剂,PI堆叠或复杂的蛋白质结构中溶剂化3)。更先进的力量eelds - 例如Amoeba,4 TTM,5
[信用:UVA Group Equivariant NNS演讲; https://github.com/quva-lab/escnn;几何深度学习,Bronstein等。2021]
抽象的流行表示方法鼓励在输入上应用的转换下的特征不变性。然而,在3D感知任务中,诸如对象定位和segmen的任务中,输出自然与某些转换(例如旋转)相等。使用训练前损失函数,鼓励在某些转换下的特征等同于特征,提供了强大的自学信号,同时还保留了传输特征表示之间的几何关系信息。这可以在下游任务中改善与此类转换一样的下游任务。在本文中,我们提出了一个时空的阶段性学习框架,通过共同考虑空间和时间增强。我们的实验表明,最佳性能是通过预训练的方法产生的,该方法鼓励了对翻译,缩放和平流,旋转和场景流量。对于空间增强,我们发现,根据转换,是对比度目标或按分类目标的对比度,可以产生最佳的要求。为了利用现实世界的对象变形和运动,我们考虑了顺序的LIDAR场景对,并开发出一个基于3D场景流量的新颖的均衡性目标,从而导致整体上的性能。我们表明,在许多设置中,3D对象检测的预训练方法优于现有的模棱两可的方法。
摘要在本文中,我们旨在使用深层神经网络从多云的光学图像和对齐的合成孔径雷达(SAR)图像中恢复无云的光学图像。与以前的方法相反,我们观察到卫星图像特征通常没有首选方向。通过使网络层遵守改变输入图像的方向的几何约束,可以将此见解纳入神经座的设计中,只能改变相应的输出图像的方向,而不必影响秘密的质量或细节。我们构建了一个多模式旋转 - 等级神经网络,称为EquICR(Equivariant Cloud Removal),该网络准确地编码了此几何。在接受公共SEN12MSCR数据集接受培训时,我们观察到使用EquiCR的重建图像质量的改善,与使用深度学习无内置旋转等效性相比。有趣的是,在更困难的情况下,当云覆盖量很高或训练数据集很小时,EquiCR对基线方法的改善更大。
随着自主系统越来越多地部署在开放和不确定的环境中,人们对值得信赖的世界模型的需求越来越多,这些模型可以可靠地预测未来的高维度。世界模型中博学的潜在表示缺乏直接映射到有意义的物理数量和动态,从而限制了其在下游计划,控制和安全验证中的效用和解释性。In this paper, we argue for a fundamental shift from physically informed to physically interpretable world models — and crystallize four principles that leverage symbolic knowledge to achieve these ends: (1) structuring latent spaces according to the physical intent of variables, (2) learning aligned invariant and equivariant representations of the physical world, (3) adapting training to the varied granularity of supervision signals, and (4) partitioning生成输出以支持可伸缩性和可验证性。我们在实验上证明了每个原理在两个基准上的价值。本文打开了一些有趣的研究方向,以实现和利用世界模型中的全部物理解释性。关键字:世界模型,代表性学习,神经符号AI,可信赖的自主源代码:https://github.com/trustworthy-eentine-workineered-autonomy-lab/piwm-lab/piwm-principles
我们开发了一个具有 SU ( d ) 对称性的 S n -等变卷积量子电路的理论框架,该框架建立在 Jordan 的置换量子计算形式主义之上,该形式主义基于连接 SU ( d ) 和 S n 对量子比特作用的 Schur-Weyl 对偶,并对其进行了显著推广。具体而言,我们利用 Okounkov-Vershik 方法证明了 Harrow 关于 SU ( d ) 和 S n irrep 基之间等价性的陈述,并使用 Young-Jucys-Murphy 元素建立了 S n -等变卷积量子交替分析 (S n -CQA)。我们证明 S n -CQA 能够在任何给定的 S n irrep 区段中生成任何幺正,这可以作为具有 SU ( d ) 对称性的大量量子机器学习问题的通用模型。我们的方法提供了另一种方法来证明量子近似优化算法的普遍性,并验证了四局部 SU ( d ) 对称幺正足以构建通用 SU ( d ) 对称量子电路,直至相对相位因子。我们提出数值模拟来展示在矩形和 kagome 晶格上寻找 J 1 - J 2 反铁磁海森堡模型基态能量的假设的有效性。我们的工作首次将著名的 Okounkov-Vershik S n 表示理论应用于量子物理和机器学习,由此提出了量子变分分析,强烈表明该分析在针对特定优化问题进行经典处理时是不可解决的。