多权利功能加密(MA -FE)[Chase,TCC'07; Lewko-Waters,Eurocrypt'11; Brakererski等人,ITCS'17]是对功能加密(FE)的普遍概括,其中心目标是将信任假设从单个中心信任的关键权威转移到一组多个独立和非相互作用的关键机构。在过去的几十年中,我们看到了从各种假设和各种安全性水平的FE支持不同功能类别的新设计和构造方面的巨大进步。不幸的是,在多权设置中尚未复制同样的情况。当前的MA-Fe设计范围是相当有限的,其正面结果仅因(全部或全部)属性功能而闻名,或者需要通用代码混淆的全部功能。Brakerski等人提供的含义可以部分解释MA-FE中的最新技术。(ITCS'17)。表明,即使只有在有限的收集模型中安全的磁盘方案才能安全,即使MA -FE方案才能安全,即使在界限模型中,每个机构最多都会损坏了通用的混淆方案。在这项工作中,我们重新审视了Ma -fe的问题,并表明从Ma -Fe到混淆的现有含义并不紧张。我们提供了新的方法来设计MA -FE,用于简单和最小的加密假设的电路。我们的主要贡献总结为
摘要:后量子安全性密码方案假设量子对手仅收到使用密钥进行计算的经典结果。此外,如果对手可以获得结果的叠加态,则后量子安全方案是否仍然安全尚不清楚。在本文中,我们形式化了一类公钥加密方案,称为 oracle-masked 方案。然后我们为这些方案定义了明文提取程序,该程序模拟了具有一定损失的量子可访问解密 oracle。明文提取程序的构造不需要将密钥作为输入。基于此属性,我们证明了量子随机 oracle 模型 (QROM) 中 Fujisaki-Okamoto (FO) 变换的 IND-qCCA 安全性,并且我们的安全性证明比 Zhandry (Crypto 2019) 给出的证明更严格。我们还给出了 QROM 中 REACT 变换的第一个 IND-qCCA 安全性证明。此外,我们的形式化可以用于证明具有明确拒绝的密钥封装机制的 IND-qCCA 安全性。作为示例,我们在 QROM 中给出了 Huguenin-Dumittan 和 Vaudenay (Eurocrypt 2022) 提出的 T CH 变换的 IND-qCCA 安全性证明。
完全同态加密(FHE)是在加密数据上执行计算的强大工具。Cheon-Kim-Kim-Song(CKKS)方案是近似FHE的实例化,对于具有真实和复数的机器学习应用程序特别有效。al-尽管CKK具有明确的效率优势,但混乱始终围绕着准确描述图书馆中的应用,并安全地实例化了这些问题的计划,尤其是在Li和Micciancio(Eurocrypt'21)的关键恢复攻击之后,用于IND-CPA D设置。目前在IND-CPA D的应用程序不合时宜的,通用的定义以及软件库中CKK的高效,特定于应用程序的实例之间存在差距,这导致了Guo等人的最新攻击。(USENIX SECurity'24)。要缩小此差距,我们介绍了应用程序意识到的同构加密(AAHE)的概念,并设计了相关的安全性定义。该模型更紧密地与实践中的方案实施和使用的方式更加紧密,同时还可以识别和解决流行库中潜在的漏洞。然后,我们提供了一种应用程序规范语言(ASL),并制定指南,以实现AAHE模型,以实现CKKS实际应用的IND-CPA D安全性。我们在OpenFhe库中提出了ASL的概念证明实现,以显示Guo等人的攻击方式。可以反驳。更重要的是,我们表明我们的新模型和ASL可用于确切方案的安全有效实例化,并应对Cheon等人最近的IND-CPA D攻击。(CCS'24)和Checri等。(加密24)。
在量子计算硬件的最新进展之后,国家标准技术研究所(NIST)是标准化的加密协议,这些协议可抵抗量子对手的攻击。NIST选择的主要数字签名方案是晶体-Dilithium。该方案的硬度基于三个计算问题的硬度:模块学习错误(MLWE),模块短整数解决方案(MSIS)和自助图。mlwe和msis经过了很好的研究,被广泛认为是安全的。然而,自我攻击是新颖的,尽管在经典上与MSI一样坚硬,但其量子硬度尚不清楚。在本文中,我们通过减少量子随机Oracle模型(QROM)中的MLWE来提供自我攻击性硬度的第一个证明。我们的证明使用了最近开发的量子重编程和倒带技术。我们方法的一个核心部分是证明了来自MSIS问题的某些哈希函数正在崩溃。从这种方法中,我们在适当的参数设置下得出了一个新的安全性证明。与Kiltz,Lyubashevsky和Schaffner(Eurocrypt 2018)的先前工作相比,它为DiLithium变体提供了唯一的其他严格安全证明,我们的证明具有适用于条件Q = 1 mod 2 N的优势,其中Q表示模量和n的模量和n的尺寸。此条件是原始二硫族提案的一部分,对于该计划的有效实施至关重要。9×和1。分别比Kiltz等人提出的分别大。我们在条件q = 1 mod 2 n下为二氨石提供了新的安全参数集,发现我们的公共密钥大小和签名大小约为2。在同一安全级别。
错误的学习(LWE)问题W.R.T.A矩阵B要求将C = SB+E MOD Q与均匀随机区分开,其中S是一个统一的秘密,E一些短误差。在Eurocrypt'22中,Wee提出了回避的LWE假设,该假设假定为“对于任何矩阵P,如果LWE W.R.T.关节矩阵(b,p)很难,然后是LWE W.R.T.b也很难,即使给出了简短的预映率,u满足bu = p mod q”。从那时起,已经出现了少数回避的LWE变体,这些变体已被证明暗示着各种高级加密原语,从基于属性的基于无界深度电路的基于属性的加密,证人加密,到掩盖无效电路。在本次演讲中,我们概述了回避的LWE假设,其中包括为什么它对高级原语及其变体的不同类型的加密证明看起来很有用。基于标准LWE的假设,我们针对三个私人胶卷LWE变体构建了简单的反例,出现在先前的工作中。然后,基于现有变体和我们的反例,我们建议并定义三类合理的回避LWE假设,适当地捕获了我们不知道基于非碰撞的反例的现有变体。我们也有理由在我们的假设公式下可以修复相关作品中的安全证明。与Chris Brzuska和Akinünal的联合合作。 传记与Chris Brzuska和Akinünal的联合合作。传记
Alon 等人 (CRYPTO 2021) 引入了一种具有可识别中止 (MPQC-SWIA) 安全性的多方量子计算协议。但是,他们的协议只允许 MPQC 内部各方知道恶意参与者的身份。当两组人意见不一致并需要第三方(如陪审团)来验证谁是恶意方时,这就会变得有问题。鉴于量子态可能只存在于一份副本中,这个问题在量子环境中具有更重要的意义。因此,我们强调具有可公开验证的可识别中止 (PVIA) 协议的必要性,使只有经典计算能力的外部观察者能够在发生中止的情况下就恶意方的身份达成一致。然而,由于不可克隆定理以及 Mahadev (STOC 2018) 和 Chung 等人提出的先前工作,实现具有 PVIA 的 MPQC 带来了重大挑战。 (Eurocrypt 2022)用于量子计算的经典验证的协议存在缺陷。在本文中,我们获得了第一个 MPQC-PVIA 协议,该协议假设后量子无意识传输和经典广播信道。我们构建的核心组件是一种称为可审计量子认证(AQA)的新认证原语,它以压倒性的概率识别恶意发送者。此外,我们提供了第一个具有两全其美(BoBW)安全性的 MPQC 协议,该协议保证在诚实多数的情况下输出交付,并且即使多数不诚实也能在中止时保持安全。我们的两全其美 MPQC 协议在中止时也满足 PVIA。
摘要。密码被广泛用于实践中的用户身份验证,这导致了一个问题,即我们是否可以基于它们来实现强烈安全的设置。从历史上看,这已经广泛地进行了关键交流。从低接收密码到确保通信的高熵密钥的引导程序。其他实例包括数字储物柜,签名,秘密共享和加密。是出于最近关于消耗令牌的工作的动机(Almashaqbeh等,Eurocrypt 2022),我们扩展了这些努力,并调查了密码实施密码的密码学的统一限制,其中知道密码允许执行加密功能。我们的模型由于消耗令牌的自我毁灭和不可统治性而抵抗详尽的搜索攻击。我们研究两个方向;首先是密码实施的加密功能的代表团,其中一方可以将她委派给她,例如签署或加密/解密,是另一个人的权利,使得行使委派需要知道通行证。第二个方向是密码实施的MPC,其中只有共享正确密码的参与者才能执行MPC协议。在这两种情况下,一个不知道密码的对手可以尝试一些猜测,然后功能自我毁灭。我们正式定义上述概念并构建实现它们的结构。我们在这项工作中的主要目标是根据可行的构造和支持的对手模型来研究消耗代价的力量,从而构建密码实施密码,从而概述了开放问题和潜在的未来工作方向。
摘要。变形加密的概念(Persiano,Phan和Yung,Eurocrypt '22),旨在使私人通信能够在中央权威(Henceforth称为独裁者)大量控制的环境中,他们可以获取用户的秘密密钥。从那时起,各种作品就在几个方面(包括其局限性)提高了我们对AE的理解。在这方面,最近的两部作品构建了各种抗变形的加密(是)方案,即,最多允许Covert通信的O(log(log(λ))位的方案。但是,这些结果仍然不令人满意,每个结果都至少带有以下问题之一:(1)使用加密重型锤子(例如,难以区分性混淆(IO)); (2)滥用原始定义以定义过于强大的独裁者; (3)依赖随机甲骨文模型(ROM)。尤其是,ROM中的证据是有争议的,因为它们无法解释用于实例化随机Oracle的哈希函数的变形方案。在这项工作中,我们克服了所有这些局限性。首先,我们描述了一种耐药的加密(是)方案,仅依靠公开的加密和极其有损函数(ELFS)来实现实用性,这都是从(指数)DDH假设中得知的。进一步假设独特的Nizks(从IO中知道),我们提供了另一种结构,我们后来用它来意识到第一个确定性是:也就是说,一种同时达到对每个可能的变形安全水平的变形抗性水平的单一方案。
量子信息具有测量本质上是一个破坏性过程的特性。这一特征在互补原理中表现得最为明显,该原理指出互不相容的可观测量不能同时测量。Broadbent 和 Islam (TCC 2020) 最近的研究基于量子力学的这一方面,实现了一种称为认证删除的密码概念。虽然这个了不起的概念使经典验证者能够确信 (私钥) 量子密文已被不受信任的一方删除,但它并没有提供额外的功能层。在这项工作中,我们用完全同态加密 (FHE) 增强了删除证明范式。我们构建了第一个具有认证删除的完全同态加密方案——这是一种交互式协议,它使不受信任的量子服务器能够对加密数据进行计算,并且如果客户端要求,可以同时向客户端证明数据删除。我们的方案具有理想的特性,即删除证书的验证是公开的;这意味着任何人都可以验证删除已经发生。我们的主要技术要素是一个交互式协议,通过该协议,量子证明者可以说服经典验证者,以量子态形式出现的带错误学习 (LWE) 分布中的样本已被删除。作为我们协议的一个应用,我们构建了一个具有认证删除的 Dual-Regev 公钥加密方案,然后将其扩展到相同类型的 (分级) FHE 方案。我们引入了高斯崩溃哈希函数的概念 - Unruh (Eurocrypt 2016) 定义的崩溃哈希函数的一个特例 - 并在假设 Ajtai 哈希函数在存在泄漏的情况下满足某种强高斯崩溃性质的情况下证明了我们方案的安全性。
一种变形加密方案允许两个方共享所谓的双键,以嵌入秘密消息的封闭消息,以已建立的PKE方案的密文。这可以防止一个独裁者,该独裁者可以迫使接收者揭示PKE计划的秘密钥匙,但谁对双密钥的存在不明智。我们确定了波斯安诺,潘和杨的原始模型的两个局限性(Eurocrypt 2022)。首先,在其定义中,只能生成一次双密钥,以及一个键对。这是一个缺点,即独裁者上台后想要使用变形模式的接收者需要部署新的密钥对,这是一种潜在的可疑行为。第二,接收者无法区分密文是否包含秘密消息。在这项工作中,我们提出了一个克服这些局限性的新模型。首先,我们在部署后允许将多个双键与密钥对相关联。,如果双键仅取决于公共密钥,这也可以实现可否认性。第二,我们提出了一个自然的鲁棒性概念,该概念确保解密定期加密的消息会导致一个特殊的符号,表明没有隐秘消息,这也消除了某些攻击。最后,为了实例化我们对变形加密的新的,更强的定义,我们提供了通用和具体的构造。具体而言,我们表明,Elgamal和Cramer-shoup满足了一种新的条件,选择性的随机性可恢复性,从而实现了强大的变形扩展,并且我们还为RSA-OAEP提供了强大的变形式扩展。