• 干扰项会增加难度 • Stuart Garner 2007 • Harms、Chen 和 Kelleher 2016 • Denny、Luxton-Reilly 和 Simon 2008 • 将正确块和干扰项块配对会降低难度 • Denny、Luxton-Reilly 和 Simon 2008 • 提供缩进会降低难度 • Denny、Luxton-Reilly 和 Simon 2008 • Ihantola 和 Karavirta 2011 • 较少的块会使问题更容易 • Denny、Luxton-Reilly 和 Simon 2008
人工智能和机器学习 (AI/ML) 算法在医疗保健领域的发展日渐成熟,用于诊断和治疗各种医疗状况 ( 1 )。然而,尽管此类系统技术实力雄厚,但它们的采用却一直充满挑战,它们是否能真正改善医疗保健以及在多大程度上改善医疗保健仍有待观察。一个主要原因是,基于 AI/ML 的医疗设备的有效性在很大程度上取决于其用户的行为特征,例如,用户往往容易受到有据可查的偏见或算法厌恶的影响 ( 2 )。许多利益相关者越来越多地将预测算法所谓的黑箱性质视为用户持怀疑态度、缺乏信任和接受缓慢的核心原因 ( 3, 4 )。因此,立法者一直在朝着要求提供黑箱算法决策解释的方向发展 (5) 。事实上,学术界、政府和民间社会团体几乎一致支持可解释的 AI/ML。许多人被这种方法吸引,因为它既能利用不可解释的人工智能/机器学习(如深度学习或神经网络)的准确性优势,又能支持透明度、信任和采用。我们认为,这种共识至少在应用于医疗保健领域时,既夸大了要求黑盒算法可解释的好处,又低估了其弊端。
本文解决了生成法定说明(CES)的挑战,涉及识别和修改最少的必要特征,以使分类器对给定图像的预测进行预测。我们提出的方法是反事实e xplanations(Time)的tept to-i mage m odels,是一种基于蒸馏的黑盒反事实技术。与以前的方法不同,此方法仅需要图像及其预测,从而忽略了分类器的结构,参数或梯度的需求。在生成反事实之前,时间将两个不同的偏见引入了文本嵌入的形式稳定扩散:与图像的结构相关联的上下文偏差和类别偏见,与目标分类器学到的类特异性特征相关。学习了这些偏见后,我们发现了使用类预测的类令牌的最佳潜在代码,并使用目标嵌入作为条件,从而产生了符合性的解释。广泛的经验研究证明,即使在黑色盒子设置中运行时,时间也可以产生可比性的解释。
卷积神经网络(CNN)在几十年前就无法想象的表演,这要归功于采用了数百层和近数十亿个可训练的参数的非常大的模型。然而,解释他们的决策是很不困难的,因为它们是高度非线性的,并且过度参数化。此外,对于现实生活中的应用,如果模型利用数据的伪造相关性来预测预测,则最终用户将怀疑该决定的有效性。尤其是,在医学或关键系统等高风险场景中,ML必须保证使用正确的功能来计算预测并防止伪造的关联。因此,近年来,可解释的人工智能(XAI)研究领域一直在不断发展,以了解黑盒模型中的决策机制。在本文中,我们关注事后解释方法。值得注意的是,我们对反事实解释的不断增长分支(CE)[63]。ce旨在创建输入样本的最小但有意义的扰动,以更改固定预告片模型给出的原始决定。尽管CE和对抗性示例之间的观点具有一些相似之处[44],但CE的扰动必须是可以理解和合理的。相比之下,对抗性示例[37]包含与人眼无法区分的高频噪声。总体而言,CE目标四个目标:(i)解释必须使用(ii)稀疏修改,即具有最小扰动的实例。此外,(iii)解释必须是现实的,并且可以通过
解释被视为通过使其透明的方式来增强对机器学习(ML)模型的信任的一种方式。尽管最初是一种调试工具,但现在也被广泛提议证明基于ML的社会应用预测公平和敏感性(Langer等人)(Langer等人,2021; Smuha,2019年; K a astner等。,2021;冯·埃辛巴赫(Von Eschenbach),2021年;勒本,2023年; Karimi等。,2020年; Wachter等。,2017年; Liao&Varshney,2021年)和法规(解释权(Wikipedia con-trigutors,2025))。但是,如(Bordt等人,2022年),其中许多用例都在对抗性中是对抗性的,在这种情况下,参与方的利益不一致,并受到激励以操纵解释以实现其目的。例如,一家基于ML模型的预测拒绝向申请人贷款的银行有一个令人讨厌的人将无可争议的解释退还给申请人
efrag的使命是通过在公司报告领域发展和促进欧洲观点来为欧洲的公共利益提供财务和可持续性报告。efrag建立在公司报告中的进步并为进步做出了贡献。在其可持续性报告活动中,EFRAG以欧洲委员会的形式提供了技术建议,该欧洲委员会的形式是在强大的正当程序下详细阐述的欧洲可持续性报告标准(ESR),并支持有效实施ESR。 efrag寻求所有利益相关者的意见,并在整个标准设定过程中获得有关特定欧洲情况的证据。 其合法性是建立在卓越,透明度,治理,正当程序,公共责任和思想领导力的基础上的。 这使Efrag能够令人信服,清晰,一致地讲话,并被认为是公司报告中的欧洲声音,并且是公司报告中全球进步的贡献者。在其可持续性报告活动中,EFRAG以欧洲委员会的形式提供了技术建议,该欧洲委员会的形式是在强大的正当程序下详细阐述的欧洲可持续性报告标准(ESR),并支持有效实施ESR。efrag寻求所有利益相关者的意见,并在整个标准设定过程中获得有关特定欧洲情况的证据。其合法性是建立在卓越,透明度,治理,正当程序,公共责任和思想领导力的基础上的。这使Efrag能够令人信服,清晰,一致地讲话,并被认为是公司报告中的欧洲声音,并且是公司报告中全球进步的贡献者。
经常会产生不一致的解释,并在非常相关的问题上进行解释(Chen等人,2023b)。实际上,LLMS甚至常常难以回答同一问题的重塑(Sclar等人,2023;张等。,2023)。目前尚不清楚适应LLM的流行方法,例如从人类反馈中监督的填充或加强学习能够解决此问题。我们通过引入解释 - 一致性登录(EC-FINETUNING)来解决此问题。ec-芬特列列列列斯在合成数据上的LLM精确构建以包含一致的规定。我们从一个问题解释对开始(例如,麻雀可以飞吗?”,“所有的鸟都可以飞”),产生一组相关问题(例如,“可以飞翔?”),然后回答与初始解释一致的相关问题(例如,“所有鸟类都可以飞行,以便企鹅可以飞”)。我们通过提示LLM来生成综合数据,这可能与解释LLM相同或不同。我们将EC-FINETIND应用于提问数据集,并发现它在四个芬口数据集中将自然语言解释的一致性提高了10.0%,也将七个分发数据集的概括( +4.5%相对)概括为七个未见到的数据集( +4.5%)。这表明EC-Finetuning通常对于帮助用户从其解释中构建LLM的心理模型很有用(见图1)。
效率的提高是以不透明性和偏见为代价的 [1, 21, 29]。人们越来越关注透明度和解释,以发现和减轻机器学习算法引入的偏见和错误。在这些解释方法中,基于代理的模型解释(现在称为代理解释)是最常用的 [16]。代理方法训练代理来模仿分类器的结果。选择此代理是因为其设计简单、高度透明且易于理解。在他们的调查中,Bodria 等人 [6] 将代理解释分为三类:(a)特征归因,(b)规则和(c)基于示例的解释。每个解释都有不同的目的(本文首先提出),最终影响解释的生成方式和呈现给用户的方式。
EFRAG 的使命是通过在企业报告领域发展和推广欧洲观点,服务于欧洲公众在财务和可持续性报告方面的利益。EFRAG 以企业报告为基础并为其进步做出贡献。在其可持续性报告活动中,EFRAG 以在严格正当程序下制定的欧洲可持续性报告标准 (ESRS) 草案的形式向欧盟委员会提供技术建议,并支持 ESRS 的有效实施。EFRAG 在整个标准制定过程中寻求所有利益相关者的意见并获得有关特定欧洲情况的证据。其合法性建立在卓越、透明、治理、正当程序、公共问责和思想领导力的基础上。这使 EFRAG 能够令人信服、清晰和一致地发言,并被公认为企业报告中的欧洲声音和企业报告全球进步的贡献者。
本文已由Efrag秘书处编写,在Efrag SRB的一次公开会议上进行讨论。本文构成了潜在EFRAG位置发展的早期阶段的一部分。因此,本文不代表Efrag的官方观点或Efrag SRB或Efrag SR TEG的任何个人。该论文可供使用,使公众能够遵循会议中的讨论。暂定决定是在公开场合做出的,并在EFRAG更新中进行了报告。eFrag职位作为评论信,讨论或职位论文或在这种情况下被认为适当的任何其他形式发表。已经起草了每个解释的内容,以提供特定技术问题的答案,并且不能通过类比直接扩展到其他事实模式。