反事实说明通过回答“如果”方案,阐明了复杂的系统决策,表明最小输入变化如何导致不同的结果[1]。这对于机器学习(ML)至关重要,其中了解模型的理由与决策本身一样重要[2]。通过检查假设的替代方法,反事实解释使ML模型的决策更加透明和可理解。尽管对反事实解释的兴趣越来越大,但文献上存在有关用于创建它们的生成方法的差距。变异自动编码器(VAES)[3],生成对抗网络(GAN)[4]和deno的扩散概率模型(DDPMS)[5]非常值得注意,尤其是生成反事实,尤其是对于复杂的数据模态,例如图像等复杂的数据模态,在其中调整了不隔离的功能。但是,现有的调查通常忽略生成方面或高维数据方案[6,7,8]。我们的工作通过着重于复杂数据中的反事实解释的生成模型来解决这一差距,从而对其能力和局限性提供了全面的理解。在本文中,我们探讨了反事实解释的生成模型的常见用例,并突出了主要的挑战。我们通过其生成技术对方法进行分类,并检查对标准过程的修改,以满足反事实要求。我们的讨论旨在通过确定反事实解释中推进生成方法的关键挑战和潜在方向来刺激进一步的研究。while