RAM Commander 的主要模块是物料清单,可以从外部应用程序导入,也可以在 RAM Commander 中手动构建。产品树 (BOM) 构成了其余 RAM Commander RAMS 模块的基础,这些模块相互依赖,可以通过一键切换进行访问;从可靠性预测到 FMECA 和可测试性、RBD、FTA 等。RAM Commander 是一个模块化应用程序 - 模块可以单独使用和购买,也可以作为集成 RAMS 工具包使用。RAM Commander 软件支持以下可靠性预测方法:
NASA 提供的几种多旋翼概念飞行器配置。对正在审查的八种飞行器配置中的每一种都进行了功能危害分析 (FHA) 和故障模式和影响临界性分析 (FMECA)。概念飞行器的概念动力系统配置(涡轮轴发动机、电动发动机、混合动力发动机)、概念推力控制系统(转速控制和总控)和导航控制系统的概念设计是为了支持可靠性和安全性分析,并评估任务是否能够安全完成。执行两种分析:静态安全分析,可以量化单个事件的可能性;动态安全分析,可以调查多个时间相关故障。它们的目标是量化灾难性故障的可能性。
可靠性模型和解决未来故障问题的适当工具。MIL-STD-1629A 是美国国防部最受欢迎的 FMECA 标准之一。以下论文介绍了针对风力涡轮机组装进行的风险优先级数 (RPN) 的结果。该方法针对风力涡轮机组件的功能模式执行,以了解其性能并确定其关键故障。故障模式关键性的排名是基于从摩洛哥可再生能源生产领域工作的专家和决策者收集的数据实现的。此外,研究结果表明,发电机和电力系统是风力涡轮机系统中最关键的两个组件。此外,所采用的方法将帮助决策者改进需要更多关注的关键部件的设计,同时消除固有风险并提供符合生产标准的系统。
摘要。COVID-19(2019 冠状病毒病)病例数量的迅速增加迫使世界各国实施系统,尽可能广泛地检测其人口。事实上,世界卫生组织 (WHO) 已敦促所有国家尽可能多地进行检测。临床实验室必须紧急应对大量且不断增长的 SARS-CoV-2 诊断测试需求。大多数实验室不得不实施 RT-PCR(逆转录聚合酶链反应)测试方法,而没有充分的实验反馈。希望本文能够为 RT-PCR SARS-CoV-2 检测风险分析方法以及诊断测试结果可靠性分析提供有益的贡献,该方法基于鱼骨图和 FMECA(故障模式、影响和临界性分析)方法的组合。风险分析基于从真实实验室的实际经验中吸取的教训,这使作者能够确定影响 RT-PCR 测试结果可靠性的主要风险。获得错误结果(假阳性或假阴性)的概率隐含在通过 FMECA 获得的临界性评估中。换句话说,临界性越高,获得错误结果的风险就越高。因此,必须优先控制这些风险。研究了以下工艺阶段的主要风险:核酸提取、混合物制备和结果验证。对于核酸提取,高度关键风险(超过实验设定的阈值)是将样品放置在提取板上时出现错误的风险和样品不合格。对于混合物的制备,最高风险是非均质混合物,主要是将样品放置在扩增板上时出现错误。对于结果验证,关键性可以达到最高严重程度等级:在这里,需要特别注意的风险涉及原始测试数据的解释、不良的 IQC(内部质量控制)管理以及手动输入结果和/或文件编号。因此,针对人为因素影响、实验室内部污染、试剂、其他消耗品和关键设备的管理以及样品质量的影响提出了建议。本文论证了在内部和外部监控临床实验室内测试过程的质量和可靠性的必要性。
摘要:多年来,人们对维护任务的认识已发生了深刻的变化。不同的方法已应用于航空、核能、化学和制造业等工业领域。提出的方法包括以可靠性为中心的维护方法、状态监测和基于风险的检查。在海运业中,维护大致细分为三类:纠正性(或运行至故障)、预防性(或基于时间间隔)和预测性维护。维护不善的船舶会增加运营成本,降低船舶可用性和可操作性,导致船上频繁检查并造成船员过度忙碌。此外,船东/管理者试图将他们在实际海洋领域的宝贵经验与技术进步相结合,以尽量减少与维护相关的障碍。本文介绍了船舶维护的背景及其各种类别。还使用故障模式、影响和危害性分析 (FMECA) 和故障树分析 (FTA) 工具展示了一种结合风险和危害性方法的新方法。此外,使用实际现场数据的机械相关设备案例研究证明了上述方法的结果。主要结果是识别关键项目和操作程序以及确定所检查系统的可靠性。
evs/phevs电动汽车/插电式混合动力电动汽车FMECA故障模式,效果和关键分析SOC的电荷型HEV混合动力汽车PHEV插件插件混合电动汽车BEV电池电动汽车IEA IEA国际能源ACEA ACEA欧洲汽车公司欧洲汽车制造商' lithium polymer SEI solid electrochemistry interphase IEC International Electrotechnical Commission TR Thermal runaway DSC differential scanning calorimeter ARC accelerated rate calorimetry C80 Calvet calorimeter SH self-heating XPS X-ray photoelectron spectroscopy TOF-SIMS Time Of Flight - Secondary Ion Mass Spectrometry NMR MAS Nuclear magnetic resonance Magic angle spinning XRD X射线衍射EPO EPO欧洲专利办公室PEO聚乙烯氧化物PVD物理蒸气沉积PEG聚乙烯甘油CMC CMC羧甲基纤维素磷酸铁磷酸铁含液含量LMC甲酸甲酯
AD 意外损坏 AE 老化探索 ALARP 尽可能低 AMM 飞机维护手册 BITE 内置测试设备 CBM 基于条件的维护 CCMM 持续充电强制维护 CM 状态监测 CMM 部件维护手册 CPL 裂纹扩展寿命 CRL 部件更换清单 CTM 参见 Cty Cty 应急维护 DDP 设计和性能声明 DO 设计组织 DMML 主维护清单草案 DRACAS 数据报告和纠正措施系统 DUL 设计极限载荷 ECU 发动机更换单元 ED 环境损坏 EMI 电磁干扰 EO 明显的操作/经济 ERC 工程记录卡 ES 明显的安全 ESA 外部表面积 ETI 经过时间指示器 FF 故障查找 FFI 故障查找间隔 FFMC 功能故障模式代码 FLC 前线指挥 FMEA 故障模式和影响分析 FMECA 故障模式、影响和危害性分析 FMI 故障模式指示器 FOD 异物损坏
本文档是可靠性工程科 (521) 内许多人努力的成果。首先,该任务的推动力来自科长 Tom Gindorf。其次,大部分人力来自 Jim Arnett 的项目可靠性工程组。特别感谢 Harry Peacock 对附录 B 和 C 中提供的电路最坏情况和零件应力分析的广泛讨论。Frank Halula 提供了附录 A 中提供的故障模式、影响和危害性分析 (FMECA) 指南的最终更新。Charles Hayes 和 Sheldon Johnson 修订了故障树指南,以包括用于制表纠正措施的矩阵形式。Jim Clawson 和 Mark Gibbel 为文档主体和附录 E 中提供的指南提供了热分析讨论。Steve Gabriel 和 Rene Aguero 提供了单事件效应指南(附录 G)。Paul Bowerman 提供了“自动分析工具”(第 VI(B) 节)的讨论。 Merlin Grossman 博士讨论了“可靠性分配和评估”(第 VI(C) 节)。Roy Lewis 为附录 B 中的最坏情况分析指南提供了有关数字计时的意见。
NE 221 高级 MEMS 封装本课程旨在让学生为攻读 MEMS 和电子封装等更专业领域的高级课题做好准备,这些领域适用于各种实时应用,如航空航天、生物医学、汽车、商业、射频和微流体等。MEMS – 概述、小型化、MEMS 和微电子 -3 个级别的封装。关键问题,即接口、测试和评估。封装技术,如晶圆切割、键合和密封。设计方面和工艺流程、封装材料、自上而下的系统方法。不同类型的密封技术,如钎焊、电子束焊接和激光焊接。带湿度控制的真空封装。3D 封装示例。生物芯片/芯片实验室和微流体、各种射频封装、光学封装、航空航天应用封装。先进和特殊封装技术 - 单片、混合等、绝对压力、表压和差压测量的传感和特殊封装要求、温度测量、加速度计和陀螺仪封装技术、MEMS 封装中的环境保护和安全方面。可靠性分析和 FMECA。媒体兼容性案例研究、挑战/机遇/研究前沿。NE 235 微系统设计和技术
摘要:质量和可靠性保证在现代工程中的重要性确实随着太空活动的增长而被强调。,这只是倾向于将可靠性称为太空科学和技术的最大旋转。空间系统(既有发射车和航天器)的特征是无人看管的操作的特征,并具有高度的可靠性。而,关于可靠性和质量保证计划的广泛要求对于发射车和航天器都是相似的,而R&QA每个学科的特定要求由于其独特的操作配置文件而异。与单次射击任务的发射车不同,航天器需要长时间运行(12-15年),而在敌对的太空环境下进行最少的干预。本文详细介绍了针对航天器项目成功实现子系统和系统的特定R&QA规定 /要求。设计保证方法,可靠性分析,例如衍生分析,FMECA,FTA,最坏情况电路分析,潜行电路分析,可靠性分配/预测,测试和评估,非符合性控制,审查,审查等,除了常规的质量控制活动(如零件/材料过程/流程控制)外,除了传统的质量控制活动之外。关键字:质量,可靠性,航天器,发射车,太空环境,生命保证,环境测试,不合格1简介
