摘要:心理疲劳因其严重的负面影响而受到广泛研究。但心理疲劳前后任务切换的神经机制如何仍是一个问题。为此,本研究旨在利用脑功能网络特征来探索这一问题的答案。具体来说,记录了20名被试的任务状态脑电信号。任务包括400秒的2-back任务(2-BT),接着是6480秒的心算任务(MAT),然后是400秒的2-BT。根据选定的任务切换状态提取和分析网络特征和功能连接,在心理疲劳之前从Pre_2-BT到Pre_MAT,在心理疲劳之后从Post_MAT到Post_2-BT。结果表明,根据网络特征的显著变化和在Pre_2-BT和Post_2-BT之间使用支持向量机(SVM)获得的98%的高分类准确率,长期MAT成功诱发了心理疲劳。当任务从Pre_2-BT切换到Pre_MAT时,所有网络特征中delta和beta节律均出现显著变化,选定的功能连接呈现增强趋势。而当任务从Post_MAT切换到Post_2-BT时,beta节律的网络特征和选定的功能连接与心理疲劳前任务切换的趋势相反。我们的研究结果为理解大脑在任务切换过程中的神经机制以及在心理疲劳过程中的神经机制提供了新的见解。
组件的抽象焊接关节通常是最容易受到振动载荷条件的影响。Steinberg的封闭式解决方案已被广泛用于行业,以识别高风险组件,以作为振动负载下详细有限元(FE)耐用性分析的候选者。不幸的是,Steinberg的封闭式解决方案仅适用于SNPB,而不适用于无铅材料(SAC);因此,识别高风险SAC组件会很麻烦,特别是如果BOM中有许多SAC组件。本文是提出一种能够与Steinberg的封闭形式解决方案结合的方法,以识别高风险SAC组件。通过使用高和低周期的疲劳棺材曼森闭合形式方程的高周期,SNPB和SAC疲劳与应变范围关系之间的比较得出了此方法。此外,该方法还可以使用已经衍生的另一种材料中已经衍生的疲劳周期来预测一种材料的焊料关节疲劳周期,而无需重新运行详细的FE分析。此附加功能将有助于例如,如果从SAC到SNPB重新球或反之亦然,则会有任何风险。强烈建议在评估振动下的无铅组件时使用此方法,因为目前仅可用的方法可以实现此目的。关键词棺材曼森,无铅焊料,囊,斯坦伯格,SNPB,PCB
电弧增材制造 (WAAM),也称为定向能量沉积 (DED) 工艺,是一种高效的增材制造技术,具有逐层快速制造具有复杂几何形状的大型部件的巨大潜力。然而,在将这种独特的技术应用于关键应用之前,需要在各个层面上显著提高对此类部件疲劳行为和材料要求的基本理解。这项工作旨在研究 WAAM 制造的 ER70S-6 钢在单轴、扭转和多轴载荷条件下的疲劳行为。以两个不同的方向提取样本:垂直和水平,以探索方向是否对疲劳结果有任何影响。进行扫描电子显微镜 (SEM) 检查断裂样品的断裂表面并确定裂纹起始区域和断裂机制。将获得的结果与文献中关于使用传统焊接和 WAAM 技术制造的常见结构钢的疲劳数据进行了比较,结果显示与锻造 S355 样品具有相似的疲劳行为。此外,根据 DNV RP-C203 连续焊缝标准对 ER70S-6 WAAM 试样的单轴数据集进行了评估,结果证明所检查材料具有良好的抗疲劳性能。
摘要:激光冲击强化 (LSP) 已被用于通过激光金属沉积 (LMD) 来改善已修复的航空发动机部件的机械性能。本研究考察了横截面残余应力、微观结构和高周疲劳性能。结果表明,在激光熔化沉积区 200 µ m 深度处形成了 240 MPa 的压缩残余应力层,显微硬度提高了 13.1%。电子背散射衍射 (EBSD) 和透射电子显微镜 (TEM) 分析的结果表明,LSP 后取向差增加,位错特征明显,有利于提高疲劳性能。高周疲劳数据显示,与原 LMD 样品相比,LMD+LSP 样品的疲劳性能提高了 61%。因此,在航空航天领域,LSP 和 LMD 是修复高价值部件非常有效且很有前途的技术。
Murat Tiryakioǧlu 博士,CQE,顾问 Alexandra Schönning 博士,委员会成员 Paul Eason 博士,PE,委员会成员 被工程学院录取:工程学院主任 Murat Tiryakioǧlu 博士,CQE 被计算机、工程和建筑学院录取 Mark A. Tumeo 博士,PE 计算机、工程和建筑学院院长 被大学录取:John Kantner 博士 研究生院院长
摘要:使用线材的直接能量沉积 (DED) 工艺被认为是一种可以以可承受的成本生产大型部件的增材制造技术。然而,DED 工艺的高沉积速率通常伴随着较差的表面质量和固有的打印缺陷。这些缺陷会对疲劳耐久性和抗腐蚀疲劳性产生不利影响。本研究的目的是评估相变和打印缺陷对通过线材激光增材制造 (WLAM) 工艺生产的 316L 不锈钢腐蚀疲劳行为的关键影响。为了进行比较,研究了具有规则奥氏体微观结构的标准 AISI 316L 不锈钢作为对应合金。使用 X 射线微断层扫描 (CT) 分析的三维无损方法对打印缺陷的结构评估。通过光学和扫描电子显微镜评估微观结构,而通过循环动电位极化 (CCP) 分析和浸没试验评估一般电化学特性和腐蚀性能。使用旋转疲劳装置检查了在空气和模拟腐蚀环境中的疲劳耐久性。得到的结果清楚地表明,与 AISI 同类合金相比,WLAM 工艺生产的 316L 合金的腐蚀疲劳耐久性较差。这主要与 WLAM 合金的缺点有关,即具有双相微观结构(奥氏体基体和二次 delta-铁素体相)、钝化性降低以及层内孔隙率显著增加,而层内孔隙率是疲劳裂纹的应力增强因素。
摘要:疲劳驾驶是导致交通事故的重要因素之一,长期单调的驾驶易导致驾驶员注意力与警觉性下降,表现出疲劳效应。本文提出一种基于脑电图(EEG)源信号的有向脑网络角度揭示驾驶疲劳对大脑信息处理能力影响的方法。基于源分析得到的EEG信号电流源密度(CSD)数据,采用有向传递函数构建疲劳驾驶的有向脑网络。随着驾驶时间的增加,平均聚类系数和平均路径长度逐渐增加,而大部分节律的全局效率逐渐降低,表明深度驾驶疲劳增强了大脑局部信息的整合能力,同时削弱了大脑的整体能力。此外,因果流分析发现,清醒状态和驾驶疲劳状态下的电极分布存在明显差异,主要分布在前部和后部的几个区域,尤其是在θ节律下。研究还发现,在驾驶疲劳状态下,前部区域接收后部区域信息的能力明显变差。这些发现可能为揭示驾驶疲劳的潜在神经机制提供理论基础。
摘要 — 电子系统中焊点寿命估算方法成本高昂且耗时,加上数据有限且不一致,对将可靠性考虑作为电子设备主要设计标准之一提出了挑战。在本文中,设计了一个迭代机器学习框架,使用一组自修复数据来预测焊点的使用寿命,这些数据通过热负荷规格、材料特性和焊点几何形状强化了机器学习预测模型。自修复数据集通过相关驱动神经网络 (CDNN) 迭代注入,以满足数据多样性。结果表明,在很短的时间内,焊点的寿命预测精度得到了非常显著的提高。分别评估了焊料合金和焊料层几何形状对焊点蠕变疲劳损伤演变的影响。结果表明,Sn-Ag-Cu 基焊料合金通常具有更好的性能。此外,蠕变和疲劳损伤演化在 Sn-Pb 和 Sn-Ag-Cu 基焊料合金中分别占主导地位。所提出的框架提供了一种工具,允许在制造的早期阶段对电子设备进行可靠性驱动的设计。
摘要 本研究定量研究了学业负担对菲律宾玛普阿大学本科生感知心理疲劳的影响之间的关系。当前的全球疫情以及从面对面授课到远程学习的突然转变影响了学生的心理健康。研究人员使用了从包含疲劳评估量表和 NASA-任务负荷指数的数字调查中获得的 104 名受访者样本数据,然后使用描述性和推断性统计数据进行分析。结果显示,在线课程期间的学业负担因素与学生整体心理疲劳水平之间存在密切的关系。因此,结果表明,这些因素显著增加了大学生心理疲劳的强度。根据结论,结果表明 FAS 受到每个维度的极大影响——无论是精神上还是身体上。此外,分配给每个受访者的学业工作量表明,由于在线课程中分配给学生的工作量,所有认知因素(例如心理需求、身体需求、时间需求、努力和挫折感)都会受到显著影响。因此,学生必须付出更多的精神努力才能完成所需的输出。关键词 NASA-任务负荷指数、FAS、心理疲劳、在线课程 1.简介 心理疲劳通常被称为长期精神压力,这是一种由于认知活动而导致人经历认知压力和压倒性精神压力的精神状态(Maarten 等人,2008 年)。此外,自 Smith 等人以来,理论上它可以以生理或行为突然改变等各种形式表现出来。(2019) 指出,心理疲劳是具有挑战性的认知活动的产物。这种精神状态通常与疲劳和精力不足有关,而疲劳和精力不足对于健康成年人的日常最佳功能至关重要。精神疲劳可能与身体疲劳有相似的症状;然而,这两种疲劳的生物学功能是分开的,这意味着两者可能同时共存(疲劳科学,2019 年)。虽然身体疲劳源于过度的体力消耗,但个人的精神状态不会受到损害,只有在必须解决身体状态时才会恢复活力。然而,它对经历精神疲劳的不同个体仍然有不同的影响(Garikiparithi,2017 年)。2020 年 3 月 11 日,世界卫生组织 (WHO) 宣布肆虐的冠状病毒 (COVID-19) 疫情为大范围流行病,随着隔离协议和数字教育的大幅实施,精神疲劳急剧加剧。Labrague & Ballad (2021) 发表了一项研究,其中封锁引起的疲劳程度与疫情相符,包括其与菲律宾大学生的个人适应力、应对技巧和整体健康状况的相关性,这一点至关重要,因为在分析感知疲劳程度时要考虑认知因素。值得注意的是,在菲律宾的隔离限制期间,大学生的疲劳程度中等。然而,个人和认知特征被用作标识符,而不是与在线课程相关的学业工作量。此外,加利福尼亚州圣布鲁诺市的 Skyline College 发布了一项调查结果,该调查旨在解决在 COVID-19 大流行期间如何过渡到新常态的问题,统计数据显示,60% 的在校学生认为这种过渡在一定程度上具有挑战性——此外,这些挑战
摘要:聚甲醛(POM)纤维是一种具有改善机场道面混凝土性能潜力的新型聚合物纤维。POM纤维对混凝土弯曲疲劳性能的影响是其在机场道面混凝土应用中的一个重要问题。在本研究中,使用纤维体积含量为0.6%和1.2%的普通性能混凝土(OPC)和POM纤维机场道面混凝土(PFAPC)在四个应力水平下进行了四点弯曲疲劳试验,以检查这些材料的弯曲疲劳特性。在使用循环比(n / N)检查弯曲疲劳变形的变化后,进行了弯曲疲劳寿命的双参数威布尔分布检验。然后考虑各种失效概率(生存率)构建了弯曲疲劳寿命方程。结果表明,POM纤维对机场道面混凝土的静载强度无明显影响,PFAPC与OPC静载强度差异在5%以内。POM纤维可使机场道面混凝土的弯曲疲劳变形能力提高近100%,但与OPC相比,POM纤维对机场道面混凝土的疲劳寿命有不同程度的不利影响,最大降低幅度达85%。OPC和PFAPC的疲劳寿命均服从双参数威布尔分布,考虑各种失效概率的单、双对数疲劳方程对双参数威布尔分布的拟合度较高,R2均在0.90以上。PFAPC的极限疲劳强度比OPC低约4%。本次对POM纤维机场道面混凝土弯曲疲劳性能的研究,对POM纤维在长寿命机场道面建设中的应用具有明显的研究价值。