相互作用的费米式系统的自发对称破坏是多体理论的主要挑战,这是由于新独立散射channels的扩散曾经在对称阶段不存在或退化。一个例子是由哈伯德模型的铁 /抗磁性破碎对称相(BSP)给出的,其中旋转横向和自旋宽量义通道中的顶点与计算能力的随之增加,以增加计算的计算能力。我们将非扰动的两粒子一致的方法(TPSC)传达出Hubbard模型中的磁相(2)磁相,提供了一种有效的方法,具有牢固的相关性。我们表明,在BSP中,易感性的总规则执行必须伴随着修改的间隙方程,从而导致订单参数,顶点校正和保留金色模式的间隙特征的恢复。然后,我们将理论应用于半填充的立方晶格中哈伯德模型的抗铁磁相。我们将双重占用和交错磁化的结果与使用图表的蒙特卡洛获得的结果进行了比较。我们证明了verx校正在降低希格斯在自旋长态敏感性中的准粒子激发差距方面的核心作用,从而产生了可见的希格斯模式。
道格拉斯·E·坎尼(Div),医学博士; Alexandros Protonotarios,医学博士; Athanasios Bakalakos,医学博士; PETROS SYRRIS博士; Massimiliano Lorenzini,医学博士; Bianca de Stavola博士;路易丝·比格雷格(Louise Bjerregaard),医学博士; Anne M. Dybro,医学博士; Thomas M. Hey,医学博士;弗雷德里克克·汉森(Frederikke G. Hansen),医学博士; MarinaNavarroPeñalver,医学博士; Maria G. Crespo-Leiro,医学博士; Jose M.Larrañaga-Moreira,医学博士;医学博士Fernando de Frutos;蕾妮·约翰逊(Renee Johnson)博士;托马斯·A·斯莱特(Thomas A. Slater),医学博士;医学博士Lorenzo Monserrat;医学博士Anshuman Sengupta;路易莎·梅斯特罗尼(Luisa Mestroni),医学博士; Matthew R.G.泰勒,医学博士,博士;医学博士Gianfranco Sinagra; Zofia Bilinska,医学博士; Itziar Solla-Ruiz,医学博士; Xabier Arana Ahaga,医学博士; Roberto barriales-Villa,医学博士; Pablo Garcia-Pavia,医学博士,博士; Juan R. Gimeno,医学博士; Matteo dal Ferro,医学博士;马可·梅洛(Marco Merlo),医学博士;医学博士Karim Wahbi;医学博士Diane Fatkin; Jens Mogensen,医学博士; Torsten B. Rasmussen,医学博士;佩里·埃利奥特(Perry M. Elliott),医学博士
道格拉斯·E·坎尼(Div),医学博士; Alexandros Protonotarios,医学博士; Athanasios Bakalakos,医学博士; PETROS SYRRIS博士; Massimiliano Lorenzini,医学博士; Bianca de Stavola博士;路易丝·比格雷格(Louise Bjerregaard),医学博士; Anne M. Dybro,医学博士; Thomas M. Hey,医学博士;弗雷德里克克·汉森(Frederikke G. Hansen),医学博士; MarinaNavarroPeñalver,医学博士; Maria G. Crespo-Leiro,医学博士; Jose M.Larrañaga-Moreira,医学博士;医学博士Fernando de Frutos;蕾妮·约翰逊(Renee Johnson)博士;托马斯·A·斯莱特(Thomas A. Slater),医学博士;医学博士Lorenzo Monserrat;医学博士Anshuman Sengupta;路易莎·梅斯特罗尼(Luisa Mestroni),医学博士; Matthew R.G.泰勒,医学博士,博士;医学博士Gianfranco Sinagra; Zofia Bilinska,医学博士; Itziar Solla-Ruiz,医学博士; Xabier Arana Ahaga,医学博士; Roberto barriales-Villa,医学博士; Pablo Garcia-Pavia,医学博士,博士; Juan R. Gimeno,医学博士; Matteo dal Ferro,医学博士;马可·梅洛(Marco Merlo),医学博士;医学博士Karim Wahbi;医学博士Diane Fatkin; Jens Mogensen,医学博士; Torsten B. Rasmussen,医学博士;佩里·埃利奥特(Perry M. Elliott),医学博士
道格拉斯·E·坎尼(Div),医学博士; Alexandros Protonotarios,医学博士; Athanasios Bakalakos,医学博士; Petros Syris,博士; Massimiliano Lorenzini,医学博士; Bianca de Stavola博士;路易丝·比格雷格(Louise Bjerregaard),医学博士; Anne M. Dybro,医学博士; Thomas M. Hey,医学博士;弗雷德里克克·汉森(Frederikke G. Hansen),医学博士;马里兰州玛丽娜·纳瓦罗(Marina Navarro),医学博士; Maria G. Crespo-Leiro,医学博士; Jose M.Larrañaga-Moreira,医学博士;医学博士Fernando de Frutos;蕾妮·约翰逊(Renee Johnson)博士;托马斯·A·斯拉特(Thomas A. Slatter),医学博士;医学博士Lorenzo Monserrat;医学博士Anshuman Sengupta;路易莎·梅斯特罗尼(Luisa Mestroni),医学博士; Matthew R.G. div>泰勒,医学博士,博士;医学博士Gianfranco Sinagra; Zofia Bilinska,医学博士; Itziar Solla-Ruiz,医学博士; Xabier Araana Achaga,医学博士; Roberto barriales-Villa,医学博士; Pablo Garcia-Pavia,医学博士,博士; Juan R. Gimeno,医学博士; Matteo dal Ferro,医学博士;马可·梅洛(Marco Merlo),医学博士;医学博士Karim Wahbi;医学博士Diane Fatkin; Jens Mugnsen,医学博士; Torsten B. Rasmussen,医学博士;佩里·埃利奥特(Perry M. Elliott),医学博士 div>
Michael Aizenshtein,以色列 Jarir Aktaa,德国 Sandro C. Amico,巴西 K. G. Anthymidis,希腊 Santiago Aparicio,西班牙 Renal Backov,法国 Markus Bambach,德国 Amit Bandyopadhyay,美国 Massimiliano Barletta,意大利 Mikhael Bechelany,法国 Bernd-Arno Behrens,德国 Avi Bendavid、澳大利亚 Jamal Berakdar、德国 Jean-Michel Bergheau、法国 G. Bernard-Granger,法国 Giovanni Berselli,意大利 Patrice Berthod,法国 Susmita Bose,美国 H.-G. Brokmeier,德国 Steve Bull,英国 Gianlorenzo Bussetti,意大利 Marco Cannas,意大利 Peter Chang,加拿大 Daolun Chen,加拿大 Gianluca Cicala,意大利 Francesco Colangelo,意大利 Marco Consales,意大利 Gabriel Cuello,法国 Narendra B. Dahotre,美国 João P. Davim,葡萄牙 Angela De Bonis,意大利 Luca De Stefano,意大利 Francesco Delogu,意大利 Maria Laura Di Lorenzo,意大利 Marisa Di Sabatino,挪威 Ana María Díez-Pascual,西班牙 Guru P. Dinda,美国 Nadka Tzankova Dintcheva,意大利 Frederic Dumur,法国 Kaveh Edalati,日本 Philip Eisenlohr,美国 Claude Estournès,法国 Michele Fedel,意大利 Paolo Ferro,意大利 Massimo Fresta,意大利
Subodh Pandey先生Subodh Pandey先生目前是运营副总裁 - Tata Steel Meramandali的Tata Steel Meramandali,NMB和石墨烯。他在Tata Steel BSL Limited(以前称为Bhushan Steel Limited)的转型旅程中发挥了关键作用。在2018年9月1日担任首席运营官担任首席运营官后,他加强了运营,通过运营效率降低了成本并提高了运营的可靠性。这可能是IBC领导下的第一家在短短三年内展示周转的公司。在搬到塔塔钢BSL之前,潘迪先生是Tata Steel的Tubes SBU的主管。他领导了该部门的数字化转型旅程,在那里他在维护,仓储,物流,营销,销售和安全方面进行了企图并扩大了各种计划。他在扁平产品和长产品,Ferro合金和矿物部门,改进功能以及工程与项目的营销和销售方面也拥有丰富的经验。Pandey先生是B.来自IIT的Electrical Engineering技术技术,并拥有Jamshedpur Xlri的商业管理研究生文凭。他还完成了法国Insead的Cedep总体管理计划。他于1992年加入Tata Steel Jamshedpur担任研究生实习生。Pandey先生也是Tata Steel的子公司Angul Energy Limited(以前称为Bhushan Energy Limited)的主席,自2019年9月27日起。他对全面的质量管理充满热情,并为塔塔·钢铁公司(Tata Steel)获得了Deming大奖的旅程做出了贡献。
营业利润率从 2021 财年的 10.83% 提高至 2022 财年的 24.75%,原因是铁合金实现价差与原材料成本的比例增加导致利差较大。Acuite 认为,尽管原材料价格波动,但中期利润率仍将保持健康。 强劲的财务风险状况 该公司的财务风险状况以健康的净值、低负债率和强大的债务保护指标为标志。该公司的净值为 2022 财年的 133 千万卢比,而第二财年为 56.71 千万卢比。截至 2022 年 3 月 31 日,该公司的负债率为 0.21 倍,而 2021 年 3 月 31 日为 0.66 倍,处于舒适状态。该公司对基金限额的依赖较低,这反映在其营运资金限额的低使用率上。 TOL/TNW 在 2022 财年为 0.72 倍,而 2021 财年为 1.05 倍。利息覆盖率 (ICR) 在 2022 财年保持强劲,为 56.05 倍,而 2021 财年为 13.70 倍。债务偿还覆盖率 (DSCR) 在 2022 财年也保持强劲,为 22.23 倍,而 2021 财年为 4.09 倍。2022 财年净现金应计额与总债务 (NCA/TD) 为 2.76 倍,而上一年为 0.53 倍。Acuite 认为,在中期内没有任何大型债务融资资本支出计划的情况下,财务风险状况将在中期内保持健康。弱点
怀孕和哺乳动物研究并未表明与生殖毒性有关的直接或间接有害影响。在怀孕期间,应仔细评估风险收益比后再使用 Thioctacid® 600 HR。尚不清楚硫辛酸及其代谢物是否会排泄到母乳中。必须决定是否停止母乳喂养或停止使用 Thioctacid® 600 HR 治疗,同时考虑到母乳喂养对孩子的益处和治疗对母亲的益处。哺乳期间使用该药物取决于医生或牙医的评估和监测。未经医生或牙医建议,孕妇不应使用此药。驾驶和操作机械 头晕和眩晕会损害驾驶车辆、操作机械和/或在不稳定区域工作的能力。除非您确定治疗不会让您感到头晕,否则在驾驶或操作机器时请务必小心。儿童人群 Thioctacid ® 600 HR 禁用于儿童和青少年。与食物和其他药物的相互作用 Thioctacid ® 600 HR 可能会导致顺铂(一种抗癌药物)失去作用。 Thioctacid ® 600 HR 不应与含铁或镁的产品或乳制品一起服用。早餐前服用 Thioctacid ® 600 HR 时,可以在服用 30 分钟后服用乳制品,午餐或晚餐时可以服用铁和镁产品。由于 Thioctacid ® 600 HR 可能会增强胰岛素或其他糖尿病药物的效果,您可能需要更频繁地检测血糖,尤其是在开始使用 Thioctacid ® 600 HR 治疗时,并且可能需要根据医生的指示减少您正在服用的胰岛素或其他口服抗糖尿病药物的剂量。 Thioctacid ® 600 HR 不应与牛奶或果汁一起服用。与食物同时食用可能会削弱产品的作用。如果您正在服用任何其他药物,请告知您的医生或牙医。未经医生许可,请勿使用药物。这对你的健康可能有害。
1.1工程物理学半导体材料,P型和N型半导体;半导体中的费米水平;当前的半导体传导,P-N结二极管的I-V特性,一些特殊的P-N二极管:Zener二极管,隧道二极管,照片二极管和光发射二极管。爱因斯坦的物质辐射相互作用理论以及A和B系数;通过种群反演,不同类型的激光器来扩增光线:气体激光器(HE-NE,CO2),固态激光器(Ruby,Neododim),染料激光器;激光束的特性:单色,相干性,方向性和亮度,激光斑点,激光在科学,工程和医学中的应用。光纤介绍,验收角,数值孔径,归一化频率,传播模式,材料分散和脉冲扩展,在光纤,光纤连接器,拼接和耦合器中,光纤的应用。电磁波和电介质,梯度,发散和卷曲的物理意义,电场与潜在之间的关系,介电极极化,位移电流,麦克斯韦的方程,自由空间中的电磁波传播,以及各向同性的电介质介质中介质,poynting媒介,poynting媒介物,电子磁性,电子磁性,基本概念(基本构想)。Magnetic Materials & Superconductivity, Basic ideas of Dia, Para, Ferro & Ferrimagnetic materials, Ferrites, Hysteresis loop, Magnetic Anisotropy, Superconductivity, Superconductors as ideal diamagnetic materials, Signatures of Superconducting state, Meissner Effect, Type I & Type II superconductors, Applications of superconductivity.1.2基本电气和电子工程DC电路,涵盖了欧姆法律和基希霍夫的法律;分析由独立电压源激发的串联,并行和串联平行电路;力量和能量;电磁涵盖,法拉第法律,伦茨法律,弗莱明的规则,静态和动态诱导的EMF;自我电感,相互电感和耦合系数的概念;存储在磁场中的能量;单相交流电路涵盖正弦电压的产生,平均值,均方根值,正弦电压的外形因子和峰值因子和电流,交替数量的相量表示;分析
化疗无法消灭癌细胞,主要是因为药物不能选择性地在肿瘤部位积聚,而这也会影响健康细胞。在本研究中,我们研究了磁铁矿纳米结构脂质载体 (NLC),以便将姜黄素靶向递送到乳腺癌细胞中。采用共沉淀法,在碱性介质中将 FeCl 2 和 FeCl 3 以适当的比例混合,制备超顺磁性氧化铁纳米粒子 (SPION)。所得磁流体非常稳定且具有高磁性。为了制备含有 NLC (NLC-SPION)、十六烷基棕榈酸酯和鱼肝油的 SPION,分别使用 Tween 80 和 span60 作为固体脂质、液体脂质、表面活性剂和助表面活性剂。将抗癌药物姜黄素负载于NLC-SPIONs(CUR-NLC-SPIONs)中,评价其粒径、zeta电位、多分散指数(PDI)、药物包封率、载药量和热稳定性等特性。结果表明,CUR-NLC-SPIONs的平均粒径为166.7±14.20nm,平均zeta电位为-27.6±3.83mv,PDI为0.24±0.14。所有制备的纳米粒子(NPs)的包封率为99.95±0.015%,载药量为3.76±0.005%。通过透射电子显微镜(TEM)进行形态学研究,表明NPs呈球形。 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物 (MTT) 测定细胞活力证明,合成的 CUR-NLC-SPION 对人类乳腺癌细胞具有比游离姜黄素更好的细胞毒活性。这种新型药物输送系统受益于超顺磁性,可作为开发新型生物相容性药物载体的合适平台,并有潜力用于靶向癌症治疗。