和核磁共振 (NMR) [7] 已经开发出来。但总的来说,这些检测方法仅限于小型动态组合文库 (DCL) 大小,使用相对大量的蛋白质 (> 10 μM) 并且操作繁琐。报道了一种鉴定蛋白酶抑制剂的方法,该方法涉及醛和亲核试剂的可逆原位反应,监测荧光报告底物水解的抑制情况。[8] 荧光偏振 (FP) 分析已与片段连接结合使用以优化蛋白质结合:通过与亲核片段的原位反应延伸荧光素标记的底物类似物肽与 C 端醛,以增强蛋白质结合亲和力。[9] 在这里,我们报告如何通过在单个孔中原位合成和筛选抑制剂 (ISISS) 来有效发现适合体内使用的人类酶抑制剂。 ISISS 方法将双正交反应与基于 FP 的靶标结合分析相结合,能够对大量片段组合进行时间无关的检测。ISISS 方法操作简单,可在 384 孔板高通量模式下进行(图 1)。我们将基于 FP 的 ISISS 策略应用于发现人类脯氨酰羟化酶 2 (PHD2) 的体内活性抑制剂,PHD2 是治疗慢性肾病 (CKD) 相关贫血的靶标。ISISS 方法采用荧光素标记探针,该探针由异硫氰酸荧光素 (FITC) 和强效 PHD2 抑制剂连接而成(探针结构如图 S2 所示),并通过 FP 分析监测低浓度人类 PHD2 (20 nM) 与竞争性配体的结合(图 S2)。 [10] PHD 催化作用对促红细胞生成素的生物合成有负面调节作用,因此 PHD 抑制剂可促进血红蛋白 (Hb) 的产生和红细胞生成。[11] PHD2 抑制剂有可能彻底改变贫血的治疗,首创的 PHD2 抑制剂罗沙司他现已获准用于临床。[12] 在这里,我们报告了 ISISS 方法如何有效地识别与罗沙司他具有相似效力的 PHD2 抑制剂,包括在体内环境中。根据 PHD2 活性位点的结构特征(图 2A)和双正交酰腙形式,我们能够识别出与罗沙司他具有相似效力的 PHD2 抑制剂。
摘要:荧光检测是目前世界范围内常用的技术之一。本文讨论了一种有趣的复合材料的制备和光学特性。结果表明,将溶胶-凝胶自燃法获得的钴尖晶石铁氧体 (CoFe 2 O 4 ) 封装到聚[二苯基-甲基 (H)]硅烷基质中,可得到具有有趣光学特性的氟磁性粒子 (PSCo)。透射电子显微镜结合能量色散 X 射线分析显示,500 nm 大的球形结构包含一个由磁性铁氧体颗粒组成的核心(直径约 400 nm),周围包裹着一层薄薄的半导体荧光聚合物。所获得的材料表现出亚铁磁性。FTIR 光谱证实聚硅烷的 Si-H 功能得以保留。紫外光谱结合分子建模研究表明,磁芯对 σ 共轭聚硅烷分子内电子跃迁特性有很强的影响。稳态荧光光谱的进一步分析表明,内部磁场大大增强了聚硅烷的发射。未来将进一步研究这一特性,以开发新的检测装置。
亲自出席请戴上口罩,你的邻居可能有健康问题!35 平方英尺 = 与其他人保持 6 英尺的距离请将问题留到问答时间现场观众提出的问题由演讲者在 Zoom 上重复
a. 巴黎萨克雷大学,ENS Paris-Saclay,CNRS,PPSM,91190 Gif-sur-Yvette,法国 b. CNR-NANOTEC – 纳米技术研究所,c/o Campus Ecoteckne,Via Monteroni,73100 Lecce,意大利 c. 考纳斯理工大学聚合物化学与技术系,Radvilenu plentas 19,LT50254 Kaunas,立陶宛 d. 杜伦大学物理系,杜伦 DH1 3LE,英国 * antonio.maggiore@ens-cachan.fr 摘要 光物理特性的控制对于电致发光器件和发光材料的持续发展至关重要。原始分子的制备和研究揭示了高效材料和器件的设计规则。在这里,我们基于热激活延迟荧光发射体中流行的供体-受体设计制备了 7 种新化合物。我们首次引入了苯并呋喃并[3,2-e]-1,2,4-三嗪和苯并噻吩并[3,2-e]-1,2,4-三嗪受体,它们与几种常见的供体相连:吩恶嗪、吩噻嗪、咔唑和 3,6-二叔丁基咔唑。在溶液和固态下进行了 DFT 计算和稳态和时间分辨光物理研究。虽然含有吖嗪部分的衍生物在任何形式下都是非发射性的,但包含 3,6-二叔丁基咔唑的化合物在所有情况下都显示 TADF。更有趣的是,用咔唑供体取代的两种衍生物在分散在聚合物基质中时具有 TADF 活性,在室温下以纯膜(微晶形式)的形式呈现磷光性。
个性化医疗是解决癌症精准诊断和有效治疗挑战的关键技术[1],比单一的诊断或治疗方法更具优势。癌症诊疗在患者分层和个性化医疗以及实时监测纳米药物治疗过程方面显示出巨大潜力,从而提供有关纳米药物治疗效果的反馈。[2]诊疗系统的诊断功能提供有关生物体内肿瘤位置和大小的信息,而治疗功能则侧重于药物的抗肿瘤作用。[3]此外,分子成像是医学成像中最先进的技术,涉及肿瘤诊断、精准药物开发等领域。[4]在各种技术中,光声 (PA) 成像提供厘米级深成像深度,而荧光 (FL) 成像具有具有出色分辨率和灵敏度的优势;因此受到了广泛关注。PA 成像具有低灵敏度,而 FL 成像缺乏空间分辨率;因此,两者各有优缺点,具有互补的优势。
在大多数口腔癌患者中,手术治疗包括切除原发性肿瘤以及切除淋巴结(LNS),以进行分期或进行治疗。手术期间收获的所有LN都需要组织加工和随后的微观组织疗法评估,以确定淋巴结阶段。在这项研究中,我们研究了在组织病理学检查之前溶于荧光示踪剂cetuximab-800CW的使用来区分肿瘤阳性和肿瘤阴性LN。在这里,我们报告了一项临床试验的回顾性临时分析,旨在评估口腔鳞状细胞癌患者的切除缘(NCT02415881)。方法:手术前两天,将患者静脉注射75 mg西妥昔单抗,然后是15 mg Cetuximab-800CW(一种表皮生长因子受体 - 靶向均匀的示踪剂。获得了切除的,福尔马林固定的LN的荧光图像,并与组织病理学评估相关。结果:514 LNS(61个病理性的淋巴结)的荧光分子成像可以检测具有100%敏感性的肿瘤阳性LNS exvo,且特定的86.8%(曲线下的面积为0.98)。在此队列中,需要微观评估的LN数量减少了77.4%,而不会缺少任何转移。此外,在7.5%的LNS假阳性对荧光成像的阳性中,我们鉴定了标准组织病理学分析所遗漏的转移酶。结论:我们的发现表明表皮生长因子受体 - 靶向荧光分子成像可以帮助检测口腔癌患者的离体环境中的LN跨阶段。这种图像引导的概念可以改善术后LN检查的有效性并确定其他转移,从而保护适当的术后治疗并有可能改善预后。
Luebbert* 1,3 , Annet EM Blom 5 , Bruce N. Cohen 1 , Jonathan S. Marvin 4 , Philip M. Borden 4 , Charlene H. Kim 1 , Anand K. Muthusamy 5 , Amol V. Shivange 1 , Hailey J. Knox 5 , Hugo Rego Campello 6 , Jonathan H. Wang 1 , Dennis A. Dougherty 5 , Loren L. Looger 4 , Timothy Gallagher 6 , Douglas C. Rees 5,7 , Henry A. Lester 1ª * 共同第一作者 1 加州理工学院生物与生物工程系
1外科部,莱顿大学医学中心,荷兰2333 ZA LEIDEN; f.a.vuijk@lumc.nl(F.A.V. ); j.a.stibbe@lumc.nl(J.A.S. ); r.d.houvast@lumc.nl(R.D.H. ); b.a.bonsing@lumc.nl(B.A.B. ); c.f.m.sier@lumc.nl(c.f.m.s. ); p.j.k.kuppen@lumc.nl(P.J.K.K. ); kb@chdr.nl(J.B。); a.l.vahrmeijer@lumc.nl(A.L.V. ); j.s.d.mieog@lumc.nl(J.S.D.M.) 2尼德兰Za Leiden 2333 Za Leiden的莱顿大学医学中心医学肿瘤学系; S.A.C.Luelmo@lumc.nl 3病理学系,莱顿大学医学中心,荷兰2333 Za Leiden; A.S.L.P.Crobach@lumc.nl 4莱顿大学医学中心放射科,荷兰2333 Za Leiden; s.feshtali@lumc.nl 5 5号放射科,核医学科,莱顿大学医学中心,荷兰2333 ZA LEIDEN; l.f.de_geus-oei@lumc.nl 6生物医学光子成像小组,Twente大学,7522 NB NB ENSCHEDE,荷兰7 Percuros B.V. R.J.Swijnenburg@amsterdamumc.nl 9放射科,核医学部,阿姆斯特丹UMC,位置VUMC,荷兰1081 HV阿姆斯特丹; ad.windhorst@amsterdamumc.nl 10人类药物研究中心,2333 CL LEIDEN,荷兰 *通信:m.a.van_dam@lumc.nl;电话。 : +31-71-529-84-201外科部,莱顿大学医学中心,荷兰2333 ZA LEIDEN; f.a.vuijk@lumc.nl(F.A.V.); j.a.stibbe@lumc.nl(J.A.S.); r.d.houvast@lumc.nl(R.D.H.); b.a.bonsing@lumc.nl(B.A.B.); c.f.m.sier@lumc.nl(c.f.m.s.); p.j.k.kuppen@lumc.nl(P.J.K.K.); kb@chdr.nl(J.B。); a.l.vahrmeijer@lumc.nl(A.L.V.); j.s.d.mieog@lumc.nl(J.S.D.M.)2尼德兰Za Leiden 2333 Za Leiden的莱顿大学医学中心医学肿瘤学系; S.A.C.Luelmo@lumc.nl 3病理学系,莱顿大学医学中心,荷兰2333 Za Leiden; A.S.L.P.Crobach@lumc.nl 4莱顿大学医学中心放射科,荷兰2333 Za Leiden; s.feshtali@lumc.nl 5 5号放射科,核医学科,莱顿大学医学中心,荷兰2333 ZA LEIDEN; l.f.de_geus-oei@lumc.nl 6生物医学光子成像小组,Twente大学,7522 NB NB ENSCHEDE,荷兰7 Percuros B.V. R.J.Swijnenburg@amsterdamumc.nl 9放射科,核医学部,阿姆斯特丹UMC,位置VUMC,荷兰1081 HV阿姆斯特丹; ad.windhorst@amsterdamumc.nl 10人类药物研究中心,2333 CL LEIDEN,荷兰 *通信:m.a.van_dam@lumc.nl;电话。: +31-71-529-84-20
碳量子点 (CD) 是小于 10 纳米的碳纳米粒子,具有吸引人的光致发光特性、良好的水溶性、高稳定性和生物相容性。该名称源于其最重要的特性:荧光,这使它们可以与量子点(荧光半导体纳米粒子)同化。它们与这些的不同之处在于它们主要由碳组成,碳是一种通常无毒的元素,预计这将为它们在生物领域的应用带来显著优势。因此,CD 这个名字反映了发射与入射光不同波长的光的组成和特性。自从 Xu 等人发现它们以来,CD 一直被广泛地用作光的来源。 2004 年,1 圆二色球被应用于不同的基础研究环境和非常技术性的应用,从分子通讯 2-5 到治疗诊断 6,以及用于检测特定分析物 7、8,特别是金属离子。 9-11 此外,正如 Sun 等人所证明的,通过表面钝化,圆二色球荧光产量大大增加。 12 虽然圆二色球荧光的化学-物理机制尚未完全了解,13 但文献中发现,荧光可以通过多种因素进行调节:粒度(量子效应)、表面基团、表面缺陷、具有不同程度 π 共轭的荧光团和位于团簇的 sp 2 碳和基质的 sp 3 碳之间的电子空穴。 14 − 16 最近的研究表明,光学特性会因所用的合成方法、钝化、掺杂和 CD 的尺寸而有很大差异。17 − 22 这表明荧光可能取决于纳米粒子的表面,特别是可能导致某些波长吸收的“表面缺陷”。23 因此,表面的功能化