多光谱成像和时间分辨成像是荧光显微镜中的两个常见采集方案,它们的组合可能有益于提高特异性。数据集(时空,时间和光谱)的多维性引入了一些挑战,例如获取大数据集和较长的测量时间。在这项工作中,我们提出了一个时间分辨的多光谱荧光显微镜系统,其测量时间短,通过基于单像素摄像机(SPC)方案利用压缩感(CS)来实现。带有高分辨率摄像头的数据融合(DF)使我们能够解决典型的SPC的低空间分辨率问题。集成了硬件和算法的SPC,CS和DF的联合使用代表了一个计算成像框架,以减少在保留信息内容的同时减少测量的数量。这种方法已被利用以演示缩放功能而无需移动光学系统。我们在空间,光谱和时间特性方面描述和表征系统,以及对细胞样品的验证。
作者:SITA Messtechnik GmbH 应用部门 André Lohse 和 Tilo Zachmann 表面上的化学和薄膜残留物会导致工业生产过程(如涂层、粘合和焊接)出现质量问题。随着质量要求的提高和向更高效生产方法的转变(如胶粘或电子束焊接 (EBW)),对清洁表面及其验证的需求也随之增加。荧光测量是一种适用且经过验证的无损表面检测方法,因为它具有灵敏度高、响应速度快和非接触式测量特点。荧光物理学荧光是冷光的一种形式。冷光是指原子或分子受激发后发光。光子发射(光)的情况称为光致发光。荧光机理如图 1 所示。为了激发荧光,用紫外线光源照射测试表面。表面任何污染物的分子都会吸收高能辐射 (1)。在光子的激发下,电子达到更高的能级(2,激发态)。激发的分子与周围环境发生碰撞,并释放出一小部分吸收的能量(3)。
摘要:提出并评估了一种超低水平光检测模块——时间相关光子计数器,用于荧光分析。时间相关光子计数器采用硅光电倍增管作为光子计数传感器,结合泊松统计算法和双时间窗技术,可以准确计数光子数。时间相关光子计数器与时间相关单光子计数技术兼容,可以记录非常微弱的光信号的到达时间。利用这种低成本、紧凑的仪器分析了异硫氰酸荧光素的强度和寿命,获得了16 pg/ml的检测限,线性动态范围从2.86 pg/ml到0.5 µ g/ml,测得异硫氰酸荧光素的寿命为3.758 ns,与先进的商用荧光分析仪的结果一致。时间相关的光子计数器可能在即时诊断等应用中很有用。
细胞活力测定试剂盒,绿色/红色荧光提供了一种方便而健壮的方法,可以通过使用两种荧光染料,钙调钙钙钙钙蛋白盐AM和碘化丙啶,从而确定细胞活力,从而可以同时检测和区分可行的和不可行的细胞。作为荧光染料,钙软糖AM最初是非荧光的。被动地进入细胞后,仅存在于活细胞中的细胞内酯酶,将小钙蛋白AM水解为钙调钙蛋白(Bratosin等人)。绿色荧光的强度与酯酶活性量成正比,因此可以与活细胞的数量相关。碘化丙啶是第二种氟化染料;但是,与钙软糖不同,它只能越过死亡细胞的受损膜。进入死细胞后,碘化丙啶在与DNA结合时会产生红色。该试剂盒中的染料非常适合与荧光显微镜或荧光微孔板读取器一起使用,该板板读取器能够在FITC(适用于钙调蛋白)和TRITC(用于碘化丙啶)通道中检测。该测定法可以检测和量化粘附或悬浮培养物中的细胞增殖,或将其纳入体外细胞毒性测定法。
了解细胞的复杂三维结构在生物学的许多学科中至关重要,尤其是在神经科学中。在这里,我们介绍了一组模型,包括3D变压器(Swinuneter)和一种新颖的3D自我监督学习方法(WNET3D),旨在解决生成3D地面真相数据和量化3D卷的核的固有复杂性。我们开发了一个名为CellSeg3d的Python软件包,该软件包在Jupyter笔记本和Napari GUI插件中提供了对这些模型的访问。认识到高质量的3D地面真相数据的稀缺性,我们创建了一个完全被人类宣传的中膜数据集,以提高该领域的评估和基准测试。为了评估模型性能,我们在四个不同的数据集中进行了测试:新开发的MesoSpim数据集,一个3D Platynereis-ish-Nuclei共聚焦数据集,一个单独的3D Platynereis-Nuclei灯光数据集,以及一个具有挑战性且具有挑战性和密集包装的Mouse-Skull-Nucleii colderii coldasaset。我们证明,我们的自我监管模型WNET3D(未经任何地面真相标签训练)以最先进的监督方法来实现绩效,为在标签式生物学环境中更广泛的应用铺平了道路。
活检是肿瘤诊断的黄金标准,因为该技术提供了有关肿瘤发生和进展的高度详细且可靠的信息。类似于沙漠甲虫的离散性润湿性,在这项研究中,开发了荧光聚合酶链反应(F-PCR)微针阵列(MNA)平台,用于有效的空间肿瘤活检。通过自下而上的自组装和自上而下的Photolithog-raphy的耦合策略来制造此MNA。它包括疏水二氧化硅组装的底物和石墨烯气凝剂 - 凝胶凝胶混合微针峰。从其石墨烯混合微尼峰的亲水性和吸收能力中造成的好处,MNA可以轻松地穿透组织样品并立体地收集肿瘤酸性生物标志物。此外,由于平台的离散性,组织流体和PCR液体都可以轻松从底物中去除,并且每个微针峰都与直接导致F-PCR反应进行肿瘤标记物发现的F-PCR反应相似。基于这些优势,F-PCR-MNA平台被揭示为在Standard溶液,小鼠组织样品和临床标本中检测肺癌的DNA生物标志物的理想选择,从而将其实际潜力作为创新的肿瘤生物瘤系统。
超分辨率显微镜已在纳米尺度分辨率下实现了成像。但是,在不引入可能误导数据解释的文物的情况下达到这种细节水平,需要在整个成像采集中保持样本稳定性。此过程的范围从几秒钟到几个小时,尤其是在将活细胞成像与超分辨率技术相结合时。在这里,我们基于实时跟踪效果标记的3 d主动样品稳定系统。为了确保广泛的可访问性,该系统是使用易于可用的避开功能的光学和光子组件设计的。此外,随附的软件是开源的,并用Python编写,促进了社区的采用和定制。,我们在侧面和轴向方向上在1 nm内实现样品运动的标准偏差,持续时间在小时范围内。我们的方法可以轻松地整合到现有的显微镜中,不仅使延长的超分辨率显微镜更容易访问,而且还可以使共同体和宽阔的现场活细胞成像实验跨小时甚至几天。
晚期神经胶质瘤是最具侵略性的恶性脑肿瘤,生存时间较短。实时病理学有助于或图像指导的手术程序,消除肿瘤有望改善临床结果并延长患者的寿命。我们的工作集中在开发胶质瘤术中诊断和鉴定光学标记的快速和敏感测定方面,对于肿瘤和健康脑组织之间的分化必不可少的光学标志物。我们利用了与新鲜切除的大脑组织的神经胶质瘤的代谢相关的内源性流体团的荧光寿命成像(FLIM)。宏观分辨的宏观动物神经胶质瘤模型和患者胶质母细胞瘤的手术样本以及白质的宏观分辨荧光图像已被收集。应用了几种已建立的和新算法来识别肿瘤的成像标记。我们发现神经胶质瘤的荧光寿命参数为肿瘤和完整脑组织之间的分化提供了背景。所有三种大鼠肿瘤模型均表现出恶性组织和正常组织之间的实质性差异。同样,来自患者的肿瘤表现出与周围白质的统计学显着差异,而无需进行锻炼。虽然本文中提供的数据和分析是初步的,并且需要对大量样品进行进一步研究,但基于宏观FLIM的拟议方法具有临床瘤诊断和评估神经胶质瘤手术边缘的较高潜力。
相拟合分析的基础在于使用相组合变换将图像的每个像素映射到二维空间中,称为相分子空间,基于该像素内部跨荧光寿命或光谱尺寸1,2的光子分布。每个像素在相量空间中的位置取决于光子分布的形状,并且独立于信号的强度。通过相量表示的分析不需要对样品的性质或模型的拟合的先验知识。此外,快速傅立叶变换算法的利用可实现快速计算。此分析简化了视觉检查和识别不同像素的种群,随后可以将其映射到原始的荧光图像(或图像集)3。此外,相量转换的数学特性使研究人员能够通过观察相量空间中代表的光子分布的变化来理解样品中发生的现象。在在线方法中提供了分析荧光寿命显微镜图像的相思方法背后的数学概述。
Joyce KS Poon、c、d 和 Michael L. Roukes a、b、∗ a 加州理工学院,物理、数学和天文学分部,美国加利福尼亚州帕萨迪纳市 b 加州理工学院 Kavli 纳米科学研究所,美国加利福尼亚州帕萨迪纳市 c 多伦多大学,电气与计算机工程系,加拿大安大略省多伦多市 d 马克斯普朗克微结构物理研究所,德国哈雷市 e 大学健康网络,Krembil 研究所,临床和计算神经科学分部,加拿大安大略省多伦多市 f 先进微铸造有限公司,新加坡 g 新加坡科技研究局(A*STAR),微电子研究所,新加坡 h 多伦多大学,多伦多西部医院,神经外科分部,外科部,加拿大安大略省多伦多市 i 多伦多大学,生物材料与生物医学工程研究所,加拿大安大略省多伦多市