摘要:单光子发射器的有效片上集成是光子集成电路在量子技术中应用的重大瓶颈。如果不是因为当前设备缺乏可扩展性,共振激发固态发射器正在成为近乎最佳的量子光源。目前的集成方法依赖于光子集成电路中成本低廉的单个发射器放置,这使得应用无法实现。一个有前途的可扩展平台基于二维 (2D) 半导体。然而,波导耦合 2D 发射器的共振激发和单光子发射已被证明是难以实现的。在这里,我们展示了一种可扩展的方法,使用氮化硅光子波导同时应变定位来自二硒化钨 (WSe 2 ) 单层的单光子发射器并将它们耦合到波导模式中。我们通过测量 g (2) (0) = 0.150 ± 0.093 的二阶自相关来演示光子电路中单光子的引导,并进行片上共振激发,得到 ag (2) (0) = 0.377 ± 0.081。我们的研究结果是实现可扩展光子量子电路中量子态的相干控制和高质量单光子复用的重要一步。关键词:二维材料、单光子发射器、光子集成电路、量子光子学、共振荧光、应变工程
摘要:可以设计定期间隔短的短膜重复(CRISPR/CAS)蛋白质来结合指定的DNA和RNA序列,并有很大的希望,可以准确检测核酸以进行诊断。我们将市售的试剂集成到基于CRISPR/CAS9的侧向流中,该试剂可以检测到具有单碱体特定的急性急性呼吸综合征2(SARS-COV-2)序列。此方法需要最小的设备,并代表了基于场景的简化平台。我们还开发了能够在单个反应中检测和区分SARS-COV-2,溶液和B的快速,多重荧光CRISPR/CAS9核酸酶裂解测定测定法,并区分SARS-COV-2,溶液和B,以及呼吸道合胞病毒。我们的发现提供了CRISPR/CAS9护理点诊断的原则证明,以及一个可扩展的荧光平台,用于鉴定具有重叠症状的呼吸道病毒病原体。
摘要 近年来,全脑免疫标记、光片荧光显微镜 (LSFM) 以及随后的数据与通用参考图谱的配准相结合,已经能够对成年小鼠大脑中的荧光标记或示踪剂进行 3D 可视化和量化。如今,由艾伦脑科学研究所 (AIBS CCFv3) 开发的通用坐标框架版本 3 被广泛用作配准 LSFM 数据的标准大脑图谱。然而,AIBS CCFv3 基于与用于 LSFM 成像的不同组织学处理和成像模式,因此,数据在组织对比度和形态上都不同。为了提高 LSFM 成像全脑数据的配准和量化的准确性和速度,我们基于免疫标记和溶剂透明化的大脑创建了一个优化的数字小鼠大脑图谱。与 AIBS CCFv3 图谱相比,我们的图谱可以更快、更准确地绘制神经元活动图谱,这些神经元活动以 c-Fos 表达为衡量标准,尤其是在后脑中。我们通过比较在瘦小鼠和饮食诱导的肥胖小鼠中急性给予索马鲁肽后 c-Fos 表达的全脑定量变化,进一步证明了 LSFM 图谱的实用性。结合改进的 c-Fos 检测算法,LSFM 图谱能够无偏且计算高效地表征药物对全脑神经元活动模式的影响。总之,我们建立了一个优化的参考图谱,以便更精确地绘制用于 LSFM 处理的小鼠大脑中的荧光标记物(包括 c-Fos)。
动物行为受环境刺激调节,并受神经网络活动影响,这强调了评估自由行为动物不同细胞群的形态功能特性的重要性。近年来,已经开发出许多光学工具来监测和调节蛋白质、细胞或网络水平的神经元和神经胶质活动,并为研究自由行为动物的大脑功能开辟了新途径。基因编码的传感器和执行器等工具现在通常用于研究大脑活动和功能,通过它们在不同神经元群中的表达来研究它们。与此同时,显微镜在过去几十年中也取得了重大进展。微型显微镜(微型显微镜也称为微型内窥镜)的出现已成为研究自由行为小鼠不同大脑区域细胞和网络水平大脑活动的首选方法。这种技术还允许在动物头戴显微镜执行行为任务时进行纵向研究。在这篇综述中,我们将讨论微型内窥镜成像以及这些设备为研究提供的优势。我们还将讨论微内窥镜成像的当前局限性和未来潜在的改进。
摘要。超分辨率显微镜迅速成为生命科学中的分析工具的重要性。一个引人注目的特征是能够使用(Live)细胞中荧光标记的La-Bel生物学单位,并且比传统的Mi-Croscopy允许的分辨率要高得多。然而,在观察到的流体团数方面,以这种方式获得的图像缺乏绝对强度量表。在本文中,我们讨论了对伴随它随之而来的这种流体团和统计挑战的艺术方法的状态。尤其是,我们建议通过单标记转换(SMS)显微镜生成的时间序列的调节方案,这使得可以从原始数据中以统计意义的方式量化标记数量。为此,我们对流膜片中的光子生成的整个过程进行建模,它们通过显微镜,检测和光电放大器在相机中的传播以及从显微镜图像中提取时间序列。这些建模步骤的核心是通过在两个时标(HTMM)上运行的新型隐藏的Markov模型对浮游机体动力学的仔细描述。在估计过程中,还推断出了流量转变速率的流动型数量,有关流体小子内部状态的动力学转变速率的信息。我们就将模型应用于模拟或测量的荧光痕迹时出现的计算问题,并说明了我们在模拟数据上的方法。关键词和短语:分子计数,超分辨率显微镜,定量纳米镜检查,生物物理学和计算生物学,无宿主隐藏的马尔可夫模型,统计变薄。
在材料科学中,开发具有聚集诱导发射的热活化延迟荧光 (TADF) 发射器对于构建高效电致发光器件至关重要。在此,基于高度扭曲的强吸电子受体 (A) 硫芴 (SF) 修饰的酮 (CO) 和芳胺供体 (D),通过简单的合成程序高产率设计和制备了两种具有迷人聚集诱导发射的不对称 TADF 发射器 SFCOCz 和 SFCODPAC。所得分子具有高达 73% 的光致发光量子产率和 0.03 eV 的小单重态-三重态分裂;令人惊讶的是,由这些发射器促进的高效非掺杂和掺杂 TADF 有机发光二极管 (OLED) 显示出 5,598 和 11,595 cd m − 2 的高亮度、16.8 和 35.6 cd/A 的电流效率 (CE)、9.1 和 29.8 lm/W 的功率效率 (PE) 以及 7.5% 和 15.9% 的外部量子效率 (EQE)。这项工作为探索高效的 TADF 发射器提供了一个具体的例子,这对同时促进具有高亮度和出色效率的 TADF OLED 的发展非常有利和令人鼓舞。
封面图片。上图:Thy1-GFP 标记的透明化鼠脑(CLARITY)。采用 ZEISS Lightsheet Z.1 采集,在 arivis Vision4D 中处理。使用 5 倍物镜成像,使用来自两侧的 6x7 瓷砖。插图:皮质区域的数字变焦,显示可以识别和分析单个神经元。图片由 Douglas S Richardson 拍摄;经 ZEISS 许可复制。中间左侧:有丝分裂中的 HeLa 细胞的 3D 渲染。来自 300 个时间点图像系列的快照。染色体标记为绿色(mCherry-H2B),线粒体标记为黄色(mitotracker - 深红色),内质网标记为洋红色(mEmerald-calnexin)。细胞器结构清晰可见。由 Wesley Legant 和 Eric Betzig 使用晶格光片显微镜采集。图片来自 Chen 等人Science 2014;346:1257998。经美国科学促进会许可转载。中间右侧:海洋甲壳类动物 Parhyale hawaiensis 六天大胚胎的 3D 渲染体积数据集。七天延时拍摄的一个时间点。使用 ZEISS Lightsheet Z.1 采集,数据在斐济处理和融合。图像由 Tassos Pavlopoulos 拍摄。底部:斑马鱼视网膜的发育过程,在出生后 1.5 天至 3.5 天内,每 12 小时在光片显微镜下拍摄一次。标签:视网膜神经节细胞与 Ath5:RFP(洋红色),无长突细胞和水平细胞与 Ptf1a:YFP(黄色),光感受器和双极细胞与 Crx:CFP(青色)。图片由德累斯顿马克斯普朗克分子细胞生物学和遗传学研究所(MPI-CBG)的 Norden 实验室提供(根据知识共享署名 - 相同方式共享 4.0 国际许可证授权 https://creativecommons.org/licenses/by-sa/4.0/deed.en)。
FISH 检测需要哪些样本?FISH 最常用于成人和儿童的血液样本。FISH 还可用于产前检测非整倍体(整条染色体的额外拷贝),检测方法为羊膜穿刺术采集的羊水或绒毛取样 (CVS) 采集的胎盘样本。FISH 也不太常用,用于产前检测缺失,同样使用羊水或 CVS 样本。为什么要为我们的孩子提供 FISH?如果您的孩子具有强烈暗示某种缺失综合征或其他可进行 FISH 检测的综合征的特征,通常会与标准显微镜分析一起进行 FISH。您的遗传学家可能会要求同时进行显微镜分析和 FISH 检测,或者如果显微镜分析结果正常,可能会要求进行 FISH 检测。我们将如何获得结果?您的遗传学家可能会将结果告知您,并向您介绍您孩子的结果。您几乎肯定会收到一封后续信函。结果需要多长时间才能出来?血液检测通常在 4 周内可获得结果,新生儿等特殊情况可在两周内获得结果。如果之前已提供血液样本进行显微镜分析,则检测结果可能更快获得,因为同一样本可用于 FISH 检测。