日期:2024年10月28日,星期一,12:00–17:00(日本标准时间)地点:多用途RM,1楼,2 Nd Buid,Fuchu-Campus,Tokyo农业与技术大学(TUAT)3-5-5-8 SAIWAICHO,FUCHU 335--0026,TOKEO,TOKEO,TOKEO,TOKYO,TOKEO,TOKYO,TOKYO,TOKYO,URL: https://www.tuat.ac.jp/outline/overview/access/fuchu/campus_map/ Zoom会议:https:///tuat-jp.zoom.us.us/j/82734368162?
这项研究调查了通过将加权盒融合(WBF)整合在KERAS CV框架中,从而提高了Yolov8对象检测性能的潜力。Yolov8由于其速度,准确性和现实世界中的良好声誉而被选择。KERAS CV:简化WBF实施这项工作的关键方面涉及利用KERAS CV库。这个用户友好的框架有助于开发自定义的WBF层,无缝集成到Yolov8架构中。该创新层通过基于置信度得分策略性地组合边界框,在完善对象检测结果中起着至关重要的作用。Python:开发基础Python是该项目的主要编程语言。其广泛的计算机视觉库生态系统为数据操作和模型开发提供了重要的工具。开发和评估过程是在配备GPU的工作站上进行的。此设置确保了有效的处理和实验。但是,该方法可以适应利用基于云的资源来用于大规模培训和部署方案。评估WBF严格评估WBF整合有效性的影响,采用了全面的评估策略。这种策略涉及利用可可公开可用数据集的组合,并可能由针对特定对象的感兴趣类别定制的自定义数据集补充。标准对象检测指标(例如平均平均精度(MAP))用于量化模型的性能。评估的关键方面涉及将WBF增强的Yolov8模型与没有WBF的基线Yolov8模型进行比较。
摘要 - 电池储能系统(BESS)的最新电荷(SOC)的准确预测对于电动汽车的安全性和寿命至关重要。为了克服多尺度特征融合和全球特征提取之间现有方法的不平衡,本文介绍了基于门控复发单元(GRU)的新型多尺度效果(MSF)模型,该模型是专门为实用BESS中复杂的多步社预测而设计的。Pearson相关分析首先是为了识别与SOC相关的参数。然后将这些参数输入到多层GRU中以进行点特征。同时,参数在输入双阶段多层GRU之前进行修补,从而使模型能够在不同的时间间隔内捕获细微的信息。最终,通过自适应重量融合和完全连接的网络,进行了多步骤的SOC预测。在数天内进行了广泛的验证,可以说明所提出的模型在实时SOC预测中达到的绝对误差小于1.5%。
1。配置安全证书。2。在Enterprise Manager中配置Web服务连接。3。在Agile PLM中创建创新管理用户,或将敏捷PLM配置为使用相同的轻型目录访问协议(LDAP)服务器作为Oracle Innovation Management。4。在敏捷PLM中启用创新管理属性。5。将创新管理属性添加到敏捷PLM中所需的特权中。6。在敏捷PLM中配置外部参考应用程序和子类。7。为创新管理用户启用所需的特权,可以在敏捷PLM中创建参考对象。
查询为动态3D框,并根据每个查询框生成一组POI。POI是代表3D对象并扮演基本单元在多模式融合中的角色的关键。具体来说,我们将POIS投射到每种模态的视图中,以通过动态融合块在每个POI上集成相应的功能并集成了每个POI的多模态特征。此外,从同一查询框中得出的POI的特征共同汇总到查询功能。我们的方法可以防止视图转换引起的信息损失,并消除了计算密集型的全球关注,从而使多模式3D对象检测器更适用。我们对Nuscenes和Ar-Goversy2数据集进行了广泛的实验,以评估我们的方法。明显地说,所提出的方法在两个数据集上实现了最先进的结果,没有任何铃铛和窃窃私语,即,nscenes上的74.9%NDS和73.4%的地图,Argoverse2上的31.6%CD和40.6%的地图。该代码将在https:// djiajunustc提供。github.io/projects/poifusion。
商标:GeneCopoeia™、OmicsLink™、Secrete-Pair™、GLuc-ON™、miTarget™、Fast-Fusion™(GeneCopoeia Inc)。FF006-091224
自主驾驶(AD)技术的快速进步显着强调了准确可靠的感知系统的发展,尤其是对于3D对象检测。本论文的重点是通过利用激光摄像机融合来增强自主驾驶中的3D对象。主要目的是开发一个可靠的系统,该系统将激光雷达的精确距离测量能力与相机信息提供的丰富上下文信息集成在一起,从而提高在多样化和动态驱动环境中对象检测的准确性和可靠性。本研究的目标包括开发传感器融合的系统,实施深度学习模型来处理融合数据以及通过实验验证所提出的方法。采用了预训练的Yolov5模型来检测相机捕获的2D图像中的对象。然后使用LiDAR数据将检测到的对象投影到3D空间中,该数据已同步并与相机数据校准。融合过程涉及将LIDAR点云转换为2D图像平面,以将深度信息与检测到的对象相关联,从而促进准确的3D对象。结果表明,整合LiDAR和相机数据可改善3D对象检测的效果。评估过程,其中包括将估计深度与实际测量结果进行比较,显示出最小的差异,从而证明了系统的高准确性和可靠性。本文通过在3D对象检测中提供了经过验证的IMELAIMEN-IMELAIMENT系统,从而有助于自动驾驶的领域。这些发现强调了传感器融合在增强自动驾驶汽车中感知系统的鲁棒性和准确性方面的重要性。未来的工作可能会集中在不利的天气条件下改善系统的绩效,集成其他传感器,例如雷达等其他传感器,并探索更先进的深度学习模型,以进一步推动自主驾驶技术的capabilies。
• 但为什么压缩在 ICF 中如此重要? • 想法: • 固体时 ρ DT = 0.25g/cc • 点火要求:ρR HS > 0.3 g/cm 2 • 对于固体密度 DT => R HS = 1.2cm • 我们不能只将 1.2cm 半径的固体密度 DT 加热到 5 keV 吗? • 不行! • 聚变产量将难以控制 • 输入能量要求巨大(5000 MJ)