深度学习模型在分析高维功能MRI(fMRI)数据的分析方面已使性能飞跃。然而,许多以前的方法对各种时间尺度的上下文表示次优敏感。在这里,我们提出了螺栓,这是一种血氧级依赖性变压器模型,用于分析多变量fMRI时间序列。螺栓利用一系列具有新型融合窗户注意机制的变压器编码器。编码是在时间序列中的时间段窗口上执行的,以捕获本地表示。为了暂时整合信息,在每个窗口中的基本令牌和来自相邻窗口的边缘令牌之间计算跨窗口的注意力。逐渐从局部到全球表示,窗口重叠的程度以及在整个级联反应中的数量逐渐增加。最后,一种新型的跨窗口正规化用于整个时间序列的高级分类特征。大规模公共数据集的全面实验证明了螺栓对最新方法的出色性能。此外,解释性分析是为了确定有助于建模决策最大程度贡献的具有里程碑意义的时间点和区域,证实了文献中突出的神经科学发现。
近炸引信是一种可以装入炸弹、炮弹和导弹等射弹中的装置,使它们能够在不接触目标的情况下在距目标最佳距离处爆炸。本文概述了近炸引信的历史、工作原理和在各种军事和民用环境中的应用。然后,我们讨论了各种类型的近炸引信,包括射频、磁性、声学和红外引信,以及它们在导弹防御系统、炮弹、炸弹和火箭中的具体应用。我们重点介绍了每种类型的近炸引信的优点和局限性及其具体用例。最后,我们讨论了近炸引信研究和开发中的当前挑战和未来方向,例如提高精度、射程和可靠性,同时降低成本和尺寸。总体而言,本文全面概述了近炸引信的最新技术及其增强军事和民用应用的潜力。
摘要:本文重点介绍了许多科学论文(薄壁标本)中省略的重要模型的机械性能分析,这些模型(薄壁的标本)是用创新材料(例如PLA +青铜复合材料)印刷的,使用了融合沉积建模技术。它讨论了打印过程,标本几何形状的测量,静态拉伸强度测试以及使用扫描电子显微镜进行的显微镜检查。这项研究的发现可以用作进一步研究纤毛沉积准确性和用铜粉对基本材料进行修改以及使用细胞结构进行优化的基础材料的输入。实验结果表明,使用FDM制造的薄壁模型显示出拉伸强度的实质差异,具体取决于标本的厚度和打印方向。表明,由于层之间缺乏足够的粘附力,无法测试沿Z轴上建筑平台上的薄壁模型。
摘要 — 增材制造工艺是第四次工业革命时代先进工程制造工艺的关键之一。熔融沉积成型 (FDM) 和选择性激光烧结 (SLS) 是两种可用于快速成型的增材制造 (AM) 技术。本综述研究证明了熔融沉积成型和选择性激光烧结作为汽车和航空航天可互换零件制造中先进技术开发的可行设备的重要性。本文还讨论了这两台机器对制造技术进步的影响。研究结果证明了熔融沉积成型和选择性激光烧结在制造业中高效和成功生产的巨大益处,以及两者的应用。本文的目的是总结熔融沉积成型和选择性激光烧结作为先进制造技术进步的重要技术工具。研究强调了许多优点和应用,包括耐用性、易用性、更低的生产成本、更短的制造过程交付周期、易于处理复杂的型腔和几何形状、多种高性能、更低的工具成本、生产定制产品以及开发小批量生产、桥梁制造、工程模型、测试和高温应用,以便快速将产品推向市场。
请注意,您的产品可能需要满足锂离子电池的各种安全标准,包括需要冗余的标准 - 也就是说,单一的故障点不得阻止过电流或过度充电保护功能正确运行。例如,锂离子电池的IEC标准要求在禁用电池组中使用一种保护设备进行外部短路测试。此外,可充电电动工具的IEC标准要求对某些异常条件响应锂离子充电系统永久残疾。在这两种情况下,添加二级保护设备都可以通过SchottSefuse®D6S电池保险丝等设备满足这些需求来满足这些要求。Sefuse®D6S电池保险丝完全符合相关的UL和TüV标准。
本论文由 eGrove 研究生院免费提供给您,供您开放访问。它已被 eGrove 授权管理员接受并纳入电子论文和学位论文。如需更多信息,请联系 egrove@olemiss.edu。
摘要:采用快速熔化和凝固的快速传热增材制造方法生产的合金零件与传统工艺制成的材料相比,具有不同的微观结构、特性和性能。本研究比较了采用粉末床熔合工艺制备的SS316L与冷轧SS316L的耐腐蚀和氧化性能。此外,对不锈钢表面氧化膜进行了全面评估,因为该膜对抗腐蚀和氧化性能的影响最大。研究了热处理对增材制造SS316L耐腐蚀和氧化性能的影响。SS316L具有由亚晶胞形成的微观结构,其中局部浓缩的合金元素形成稳定的钝化膜。因此,它比传统的冷轧材料具有更高的耐腐蚀和抗氧化性能。然而,已证实热处理会去除亚晶胞,从而导致耐腐蚀和氧化性能的下降。
根据矩阵和细胞密度,大于0.6-1 mm的人造3D组织模型存在着关键的挑战。根据Grimes等人报道的3D球体的体外测量。[4],通过实验观察到氧扩散距离的上限为232±22 µm。在较大的组织模型中,渗透无法通过渗透来确保氧气和养分的供应,从而导致坏死核心产生。[5]在体内,血管系统通过分支到较小的血管和毛细血管的大型动脉的复杂网络来保证营养供应。[6]要超过人造组织或基于细胞的ORGA-NOID,超过一定厚度,有必要产生微通道网络,以通过供应氧气和养分来保持细胞的生存。微通道网络必须灌注
摘要 — 传统全球导航卫星系统 (GNSS) 的抗干扰能力可能正在接近实际性能上限。在传统 GNSS 轨道和频谱之外有可能获得更大的增益。低地球轨道 (LEO) 的 GNSS 长期以来被视为有前途但成本高昂,需要大型星座来实现快速导航解决方案。最近出现的商用宽带 LEO 巨型星座引发了人们对这些星座双重用途的研究,既可用于通信(其主要任务),又可用于次要的定位、导航和授时 (PNT) 服务。这些星座的运行波长比传统 GNSS 更短,可实现高度定向、相对紧凑的接收天线。不需要特定于 PNT 的在轨资源:托管宽带网络的发射器、天线、时钟和频谱足以满足 PNT 的需求。非合作使用 LEO 信号进行 PNT 是一种选择,但与星座运营商的合作(与其通信任务“融合”)减轻了从地面跟踪密集低空星座的负担,并使接收器能够产生单历元独立 PNT 解决方案。本文提出了这样一种合作概念,称为融合 LEO GNSS。可行性取决于机会成本,或次要 PNT 任务对通信星座运营商造成的负担。这是根据时间-空间-带宽乘积和能量预算来评估的。结果表明,近距离
摘要:拓扑优化已成为轻量化和性能设计的有效工具,尤其是在航空航天工业中。事实证明,它能够满足生产更坚固、更轻便的复杂零件的要求。该技术已证明具有成本效益、提高了有效载荷能力并提高了航空航天领域的燃油经济性,并使结构部件能够在使用更少材料的情况下提供相同或增强的性能。在飞机中,机身和机翼是重要的结构部件。机翼机身耳状连接支架是连接机翼和机身的连接元件。支架的灾难性故障有时会导致飞机结构分离。这项工作专注于飞机机翼机身耳状连接支架的建模、形状优化和分析。该方法涉及使用不同材料组对支架进行建模和形状优化。进行了有限元建模和结构分析,以研究支架上的应力和变形。进行疲劳损伤评估以研究支架在重复循环载荷下的行为。关键词:- 拓扑优化、机翼机身连接支架、疲劳损伤、静态结构、载荷系数、质量减轻。