模糊控制是各种具有挑战性的控制应用的实用替代方案,因为它提供了一种通过使用启发式信息构建非线性控制器的便捷方法。此类启发式信息可能来自充当过程“人在环”控制器的操作员。在模糊控制设计方法中,我们要求该操作员写下一组有关如何控制过程的规则,然后将其纳入模拟人类决策过程的模糊控制器中。在其他情况下,启发式信息可能来自对特定过程进行过大量数学建模、分析和控制算法开发的控制工程师。同样,此类专业知识被加载到模糊控制器中,以自动化专家的推理过程和行动。无论启发式控制知识来自何处,模糊控制都提供了一种用户友好的形式化来表示和实施我们关于如何实现高性能控制的想法。在本书中,我们从控制工程的角度介绍了模糊控制。我们既关注构建非线性控制器以应对具有挑战性的实际应用,也关注对模糊控制系统动态的基本理解,以便我们在实施之前能够从数学上验证其属性(例如稳定性)。我们强调工程评估
对文献的综述深入研究了模糊图,直觉模糊图和中性粒细胞图的能量测量和决策过程之间的复杂相互作用。在图理论中,能量是用于测量结构特性并评估决策模型动力学的关键数量。考虑到涉及决策的上下文中能量测量的理论基础,计算技术和实际应用的理论基础,考虑到模糊,直觉模糊和中性粒细胞图模型所带来的特殊特征。本综述试图为希望使用能量度量的研究人员和从业者提供彻底的理解,以在这些特定图形拓扑结构中综合先前的研究中,以设置这些特定图形拓扑内包含的不确定性。
塔林技术大学机械与工业工程系,Ehitajate Tee 5,19086 Tallinn,Estonia B最佳城市中心最佳城市中心,塔林大学技术大学,Ehitajate Tee 5,19086 Tee 5,19086,Estonia,Estonia,Estonia,Estonia,Estonia,2023年11月7日获得了2023年12月18日,在线接受了2022年3月21日,2024年2024年2024年20月202日。这是根据创意共享归因的条款和条件分发的一份开放访问文章4.0国际许可CC(http://creativecommons.org/licenses/4.0)。摘要。在当前的研究中,已经实施了两种广泛使用的多标准决策方法,模糊分析层次结构过程(AHP)和模糊维科尔方法,以优先考虑多标准决策问题的标准。在此,案例研究是一种自动驾驶汽车,塔尔特伊斯·伊斯·阿维(Taltech Iseauto Av Shuttle)是在塔尔特赫大学(Taltech University)开发的。当前问题的标准由专家评估,在形成成对矩阵后,这些矩阵通过算术平均值的最大最小方法汇总。随后在模糊AHP的情况下,通过计算权重并使其标准化,获得了每个标准的相对重要性,从而导致标准的排名。此外,在模糊维科尔方法的情况下,聚合的成对矩阵加权并归一化。呈现并比较从两种方法中获得的排名。讨论了多标准决策方法模糊AHP和Vikor的优势和缺点,该方法用于自动驾驶汽车系统的风险分析。关键字:多标准决策问题,模糊分析层次结构过程(AHP),模糊维科尔方法,标准的优先级,自动驾驶汽车(AV)。简介研究多标准决策(MCDM)问题的重要性在我们日益复杂的决策世界中不能低估。在决策过程的背景下,由于同时考虑了多个经常相互矛盾的标准,因此出现了此类问题。对于对选项的系统评估,MCDM方法提供了一种方法,其中考虑了不同的定性和数值方面。他们的相关性扩展到从商业和工程到环境心理管理和医疗保健的各个领域。这些标准通常并不同等重要,替代方案的性能却大不相同。正式方法对于提供结构化的决策过程是必要的。A number of techniques have been introduced for handling multiple criteria, for instance, evo lutionary optimization [1–4], the analytic hierarchy process (AHP), the technique for order of preference by similarity to ideal solution (TOPSIS), and the vlsekriterijumska optimizacija i kompromisno resenje (multi criteria optimization and compromise solution – Vikor)方法[5-9]。为了确定在自主车辆系统中对这些重要标准进行排名的两种知名MCDM技术的功效,本文比较了AHP和Vikor方法。
模糊控制是各种具有挑战性的控制应用的实用替代方案,因为它提供了一种通过使用启发式信息构建非线性控制器的便捷方法。此类启发式信息可能来自充当过程“人在环”控制器的操作员。在模糊控制设计方法中,我们要求该操作员写下一组有关如何控制过程的规则,然后将其纳入模拟人类决策过程的模糊控制器中。在其他情况下,启发式信息可能来自对特定过程进行过大量数学建模、分析和控制算法开发的控制工程师。同样,此类专业知识被加载到模糊控制器中,以自动化专家的推理过程和行动。无论启发式控制知识来自何处,模糊控制都提供了一种用户友好的形式化来表示和实施我们关于如何实现高性能控制的想法。在本书中,我们从控制工程的角度介绍了模糊控制。我们既关注构建非线性控制器以应对具有挑战性的实际应用,也关注对模糊控制系统动态的基本理解,以便我们在实施之前能够从数学上验证其属性(例如稳定性)。我们强调工程评估
摘要:在本研究中,我们研究了一种具有逆威布尔分布的双重犹豫模糊集理论方法。用于生产系统/设备的数据/信息可能存在不确定性,这是一个非常常见的问题。双重犹豫模糊集 (DHFS) 在降低此类不确定性的有效性方面起着重要作用。DHFS 是一种有用的替代方法,可以处理专家无法提供满意或拒绝的单一选择的情况。DHFS 是犹豫模糊集或直觉模糊集或模糊集的超集。在本研究中,我们提出了一种使用 DHFS 以及逆威布尔分布 (IWD) 的方法。借助 IWD,很容易对各个级别的系统故障率进行建模,这在可靠性案例中很常见。模糊IWD用于获得系统在寿命期间发生故障的模糊可靠性。基于𝛼-cut,引入了一种DHFS方法。DHFS克服了传统方法得到的结果,因为它优于犹豫模糊集理论,因为它包括单个案例的多重分级/选择。通过给出数值示例验证了该方法的优势和重要性。
到目前为止,“模糊逻辑”一词通常指一种特定的控制工程方法,该方法利用常识控制规则的数值表示,以便通过插值合成控制律。这种方法与神经网络有许多共同特征。它现在主要关注数值函数的有效编码和近似,目前与知识表示问题的关系越来越少。然而,这是对模糊逻辑的非常狭隘的看法,与人工智能关系不大。扫描模糊集文献,人们意识到模糊逻辑也可能指另外两个与 M 相关的主题:多值逻辑和近似推理。虽然多值逻辑流非常以数学为导向,但 Zadeh 设想的近似推理概念与人工智能研究的主流程序更相关:他在 1979 年写道:“近似推理理论涉及从一组不精确的前提中推导出可能不精确的结论”。在下文中,我们将使用术语“模糊逻辑”来指代任何一种旨在用于推理机制的基于模糊集的方法。
模糊控制是各种具有挑战性的控制应用的实用替代方案,因为它提供了一种通过使用启发式信息构建非线性控制器的便捷方法。此类启发式信息可能来自充当过程“人在环”控制器的操作员。在模糊控制设计方法中,我们要求该操作员写下一组有关如何控制过程的规则,然后将其纳入模拟人类决策过程的模糊控制器中。在其他情况下,启发式信息可能来自对特定过程进行过大量数学建模、分析和控制算法开发的控制工程师。同样,此类专业知识被加载到模糊控制器中,以自动化专家的推理过程和行动。无论启发式控制知识来自何处,模糊控制都提供了一种用户友好的形式化来表示和实施我们关于如何实现高性能控制的想法。在本书中,我们从控制工程的角度介绍了模糊控制。我们既关注构建非线性控制器以应对具有挑战性的实际应用,也关注对模糊控制系统动态的基本理解,以便我们在实施之前能够从数学上验证其属性(例如稳定性)。我们强调工程评估
最近,我们提出了语言学的哥本哈根解释(或量子语言、测量理论),它对描述经典系统和量子系统都具有很强的威力。因此,我们认为量子语言可以看作是科学语言。此外,我们证明了某些逻辑(称为量子模糊逻辑)在量子语言中是有效的。一般来说,逻辑和时间不太相容。然后,本文的目的是表明量子模糊逻辑与时间配合得很好。也就是说,量子模糊逻辑的优势在于能够清楚地区分蕴涵和因果关系。事实上,我们将证明“如果没有人被骂,就没有人会学习”这个命题的反命题(或“约翰总是饿”的否定命题)可以用量子模糊逻辑来写。然而,日常语言中的“时间”有各种方面(例如,时态、主观时间)。因此,不可能用量子语言的“时间”来理解日常语言的所有“时间”。