Loading...
机构名称:
¥ 1.0

到目前为止,“模糊逻辑”一词通常指一种特定的控制工程方法,该方法利用常识控制规则的数值表示,以便通过插值合成控制律。这种方法与神经网络有许多共同特征。它现在主要关注数值函数的有效编码和近似,目前与知识表示问题的关系越来越少。然而,这是对模糊逻辑的非常狭隘的看法,与人工智能关系不大。扫描模糊集文献,人们意识到模糊逻辑也可能指另外两个与 M 相关的主题:多值逻辑和近似推理。虽然多值逻辑流非常以数学为导向,但 Zadeh 设想的近似推理概念与人工智能研究的主流程序更相关:他在 1979 年写道:“近似推理理论涉及从一组不精确的前提中推导出可能不精确的结论”。在下文中,我们将使用术语“模糊逻辑”来指代任何一种旨在用于推理机制的基于模糊集的方法。

模糊逻辑在人工智能中的位置

模糊逻辑在人工智能中的位置PDF文件第1页

模糊逻辑在人工智能中的位置PDF文件第2页

模糊逻辑在人工智能中的位置PDF文件第3页

模糊逻辑在人工智能中的位置PDF文件第4页

模糊逻辑在人工智能中的位置PDF文件第5页

相关文件推荐

2021 年
¥1.0
2021 年
¥1.0
2022 年
¥8.0
2022 年
¥1.0
2022 年
¥1.0
2021 年
¥1.0
2022 年
¥1.0
2022 年
¥5.0
2022 年
¥1.0
2022 年
¥1.0
2022 年
¥1.0
2024 年
¥1.0
2024 年
¥6.0
2024 年
¥5.0
2022 年
¥6.0
2020 年
¥5.0
2021 年
¥1.0
2024 年
¥12.0
2024 年
¥2.0
2023 年
¥1.0