审计师对财务报表审计的责任 我们的目标是合理地保证整个财务报表不存在因欺诈或错误而导致的重大错报,并出具包含我们意见的审计报告。合理保证是一种高水平的保证,但不是绝对保证,因此不能保证按照 GAAS 进行的审计总能发现存在的重大错报。由于欺诈而导致的重大错报无法被发现的风险高于由于错误而导致的重大错报,因为欺诈可能涉及串通、伪造、故意遗漏、虚假陈述或超越内部控制。如果错报单独或总体上极有可能影响合理使用者根据财务报表做出的判断,则错报被视为重大错报。在按照 GAAS 进行审计时,我们:
介绍了在 InP 和 GaAs 上生长的带隙低于 0.60 eV 的倒置变质 Ga 0.3 In 0.7 As 光伏转换器。InP 和 GaAs 上的穿线位错密度分别为 1.3 ± 0.6 × 10 6 和 8.9 ± 1.7 × 10 6 cm − 2。在辐照下,器件分别产生 0.386 和 0.383 V 的开路电压,产生 ≈ 10 A cm − 2 的短路电流密度,产生 0.20 和 0.21 V 的带隙电压偏移。功率和宽带反射率测量用于估计热光伏 (TPV) 效率。估计 InP 基电池在 1100°C 时可产生 1.09 W cm − 2,而 GaAs 基电池可产生 0.92 W cm − 2,效率分别为 16.8% 和 9.2%。两种器件的效率都受到亚带隙吸收的限制,功率加权亚带隙反射率分别为 81% 和 58%,其中大部分假定发生在分级缓冲器中。如果先前证明的反射率已达到,则估计 1100°C TPV 效率在移除分级缓冲器的结构中将增加到 24.0% 和 20.7%。这些器件也适用于 2.0–2.3 μ m 大气窗口内的激光功率转换。在 2.0 μ m 辐照度 1.86 和 2.81 W cm −2 下,峰值激光功率转换效率分别估计为 36.8% 和 32.5%。
自从 1981 年 Mimura 博士展示出第一个高电子迁移率晶体管 (HEMT) 以来,HEMT 得到了迅速发展,并在不同的材料系统中商业化,用于各种应用。在早期开发阶段,基于 AlGaAs/GaAs、GaAs/InGaAs 和 InP 的 HEMT 被广泛应用于高速电子通信应用中,具有出色的噪声和功率性能。GaN HEMT 的发展为更多应用打开了大门,例如电力电子、毫米波频率系统、生物传感和抗辐射电子。最近,基于 AlGaN 和 Ga2O3 的超宽带隙材料 HEMT 已被引入并显示出令人鼓舞的结果。本期特刊将介绍创新的 HEMT 设备、基于 HEMT 技术的应用、HEMT 相关材料研究,包括外延生长、材料特性和制造技术以及 HEMT 模拟。
纳米线中的 GaAs 量子点是可扩展量子光子学最有希望的候选者之一。它们具有出色的光学特性,可以频率调谐到原子跃迁,并为制造多量子比特设备提供了强大的平台,有望释放量子点的全部技术潜力。相干共振激发对于几乎任何实际应用都是必要的,因为它允许按需生成单个和纠缠光子、光子簇状态和电子自旋操纵。然而,这种激发方案下的纳米线结构的发射从未被证实过。在这里,我们首次展示了通过共振双光子激发和共振荧光从 AlGaAs 纳米线中外延生长的 GaAs 量子点实现双激子 - 激子级联发射。我们还报告说,共振激发方案与带隙以上激发相结合,可用于清洁和增强纳米线量子点的发射。
GaSb 在长波长器件中有许多应用,例如带间级联激光器和红外光电探测器 [1-2]。将 GaSb 相关材料单片集成到硅上对于扩展长波长器件的功能和硅平台上的光子集成具有很高的吸引力 [3]。此外,考虑到现代智能手机中红外设备(包括传感器和投影仪)的日益普及,集成到硅上是降低制造成本、减小尺寸和提高产量的有效解决方案。然而,与 GaAs/Si 和 InP/Si 材料系统相比,GaSb/Si 异质外延还远未成熟。在本研究中,以在 GaAs 衬底上生长的 GaSb 为参考,我们研究了两种不同的集成方案:在 GaAs-on-Si 模板上进行 GaSb 的界面失配 (IMF) 生长和使用长宽比捕获技术直接在 V 型槽 Si 上生长 GaSb。
简要概述了量子点及其应用。这些伪原子或人造原子提供了广泛的实际应用,因为它们的尺寸、形状和组成都是可调的。对其光学、热学、电子学和传输特性进行理论研究的基本要素是能谱,这可以通过数值方法获得。最简单、最可靠的方法之一是基于有限差分方法的方法。提到了该方法的基本方法。针对不同点尺寸的球形和立方体空间限制,给出了单电子 GaAs 和 InAs 量子点能级的一些结果。发现形状的影响与量子点的半导体材料类型无关。与球形限制相比,立方体限制中的能级更高,这可以解释为由于更高的表面与体积比。此外,还发现 InAs QD 的能量值高于 GaAs QD,这是由于两种不同材料中电子的有效质量不同。关键词:量子点;数值模拟;有限差分方法
由于碳浓度对于高功率器件至关重要,因此这些晶体是通过更复杂的垂直浮区工艺生长的。砷化镓主要用于光通信和显示器,以及即将在微电子(高速 FET 和 HEMT 器件)和功率器件(FET 阵列)中应用,到目前为止,砷化镓还无法在商业上生长到所需的质量。通过掺杂和减小生长过程中的温度梯度(液体封装的 Czochralski IILEC“和水平 Bridgman“舟式生长”),位错问题已有所缓解。然而,腐蚀坑密度 (EPD) 小于 * 10 3 cm- 2 的 GaAs 晶体尚未实现商业化,典型的 EPD 在 10 4 和 10 5 cm- 2 之间 • GaAs 的其他问题包括非化学计量、非均匀性。漩涡状缺陷。深能级缺陷 EL2,以及实现用于高速设备的半绝缘材料(没有高度扩散的补偿铬)所需的纯度。人们普遍希望 GaAs 也可以通过 Czochralski 工艺经济地生产(产生首选的圆形晶片而不是 Bridgman 工艺的 D 形晶片)。并且上述大多数问题可以通过适当调整生长参数来解决。一个重要的切克劳斯基生长中最重要的参数是对流,它决定了均匀性和涡流状和 EL2 缺陷的分布(和数量?)。下文将描述切克劳斯基过程中的各种对流方式,并介绍最有希望优化切克劳斯基熔体对流条件的方法。
最近,人们研究了从二维介质和单电子转移形成单光子源的可能性 [1–4]。其想法是通过 pn 结以受控方式注入电子,从而根据需要确定性地产生单光子脉冲。横向 pn 结可由毗邻二维空穴气区域的二维电子气区域形成。电子在穿过 pn 结后与 p 型区域的空穴复合时发生单光子发射 [4]。人们在 III-V 半导体异质结构(特别是 GaAs/AlGaAs 系统)中对不同类型的横向 pn 结器件进行了多项研究。在聚焦离子分子束外延法中,两个相邻区域选择性地掺杂 Si 和 Be,以创建 n 型区域和 p 型区域 [5]。在面再生长法中,p 型和 n 型区域都是通过掺杂在 GaAs 表面不同面上的 Si 来创建的 [6, 7]。Cecchini 等人通过蚀刻掉部分 Be 掺杂的 AlGaAs 并形成 n 型 Au-GeNi 接触,从 p 型衬底形成了横向 pn 结。[8–10]。Dai 等人使用两个感应栅极来形成二维电子和空穴气体 [11, 12]。Helgers 等人使用 GaAs 衬底上的量子线作为通道,利用表面声波传输光激发电子和空穴 [13]。在其他类型的材料系统中也可以形成横向 pn 结,