列出了一些搜索标准模型玻色子的超对称伙伴的电动伴侣和带电的瘦素的搜索结果的组合。所有搜索都使用质子 - 普罗顿碰撞数据在2016年至2018年在LHC上记录的CMS检测器记录的proton-proton碰撞数据。分析的数据对应于高达137 fb -1的集成光度。结果是用简化的超对称模型来解释的。使用这种组合添加了两种新解释:与Bino作为最轻的超对称粒子的模型频谱,以及质量分类的希格斯诺诺斯(Higgsinos)衰减到Bino和标准模型玻色子,以及先前研究的Slepton对生产模型的压缩 - 光谱区域。采用了改进的分析技术来优化Wino和Slepton对生产模型中压缩光谱的灵敏度。结果与标准模型的期望一致。组合比单个搜索提供了模型参数空间的更全面的覆盖范围,将排除量最多扩大了125 GEV,并且针对质量覆盖范围中的一些中间差距。
量子力学是 20 世纪最成功的科学理论之一,它忠实地模拟了微观世界的现象。其最显著的特征——纠缠 [1] 和波粒二象性 [2]——的体现需要精确准备系统的状态并检测单个粒子。基于电磁相互作用的量子工程合适设备最近才出现。在理论方面,精确控制量子态的可能性催生了量子信息理论 [3]。将纠缠和相干性视为资源 [4] 引发了诱人的技术前景,包括量子计算 [5]、量子密码学 [6] 和量子传感 [7]。与此同时,量子场论源于量子力学与狭义相对论 [8] 的统一。它是粒子物理学标准模型的核心,为研究高能现象提供了极其精确的框架。量子理论的巨大成功引发了人们对其普遍性和有效性极限的质疑。是否存在一种违背基本量子原理的“后量子”理论?如果是这样,它将在哪种物理状态下显现?这些问题已从许多不同的角度展开。其中之一,早在 1960 年由路易·德布罗意 [9] 概述,假设对薛定谔方程进行非线性修正 [10, 11],可能还修改了玻恩规则 [12, 13]。一类相关的理论寻求量子波函数坍缩背后的客观机制 [14]。最近发展出的一种独特策略基于非局域关联的可能性,这种关联比量子力学预测的关联更强 [15, 16, 17, 18]。然而,还有一条不同的路线,即从纯操作的角度将量子理论公理化,这开辟了一个更广泛的所谓广义概率理论框架(见 [19] 及其参考文献)。通常人们认为,如果有任何偏离标准量子理论的东西,那么它们可能与引力场的性质有关 [14]。这一假设指向两个有趣的物理区域。第一个区域由普朗克长度 1.6·10-35 m 量级的极短距离或普朗克能量 1.2·1019 GeV 左右的极大能量决定 [20, 21, 22]。第二种区域涉及尺寸 ≳10-6 m 和质量 ≳106 GeV/ c2 的宏观物体的量子叠加 [14, 23]。迄今为止,尚未有任何探索这两个领域的实验暗示出任何超越标准量子理论的新物理学[24, 25, 26]。
使用具有参数初始条件的 (3+1) 维混合框架,我们研究了重离子碰撞中已识别粒子(包括介子、K介子、质子和 Lambda 粒子)的快速度相关定向流 v 1 ( y )。考虑了涉及 Au+Au 碰撞的情况,在 √ s NN 下进行,范围从 7.7 到 200 GeV。使用测量的带电粒子伪快速度分布和净质子快速度分布来约束束流方向的动态。在该框架内,介子的定向流由倾斜源的侧向压力梯度驱动,重子的定向流主要由于横向扩展驱动的相对于束流轴的初始不对称重子分布。我们的方法成功地再现了介子和重子的 v 1 快速度和束流能量依赖性。我们发现重子的v 1 ( y )对重子的初始停止有较强的约束力,而定向流与介子的v 1 ( y )一起可以探究有限化学势下致密核物质的状态方程。
使用具有参数初始条件的 (3+1) 维混合框架,我们研究了重离子碰撞中已识别粒子(包括介子、K介子、质子和 Lambda 粒子)的快速度相关定向流 v 1 ( y )。考虑了涉及 Au+Au 碰撞的情况,在 √ s NN 下进行,范围从 7.7 到 200 GeV。使用测量的带电粒子伪快速度分布和净质子快速度分布来约束束流方向的动态。在该框架内,介子的定向流由倾斜源的侧向压力梯度驱动,重子的定向流主要由于横向扩展驱动的相对于束流轴的初始不对称重子分布。我们的方法成功地再现了介子和重子的 v 1 快速度和束流能量依赖性。我们发现重子的v 1 ( y )对重子的初始停止有较强的约束力,而定向流与介子的v 1 ( y )一起可以探究有限化学势下致密核物质的状态方程。
在量子分子动力学传输模型的框架内,已系统地研究了重离子碰撞中簇和普力的集体流。在核碰撞中的冻结阶段(即Deuteron,Triton,3 He和α)中的Wigner相位空间密度接近群体可以识别簇。在入射能量1.23的197 au+ 197 au反应中,质子和杜特子的定向和椭圆流与最近的HADES数据非常一致。高阶集体流量,即三角形和四边形流,与定向和椭圆形流的速度分布相比,幅度较小,表现出相反的趋势。3 He和α的流量结构与质子光谱非常相似。在197 Au + 197 Au的碰撞中,通过系统地研究了锥势对Pion产生的影响,并通过横向动量,纵向速度和集体流动进行比较。表明,在中高度和高动量的域中,斜胎的产量略有抑制。通过在入射能量1.5 A GEV处实施PION电位来减少抗流量现象。
我们利用相对论电阻磁流体动力学 (RRMHD) 研究了高能重离子碰撞中电荷相关的各向异性流。我们将光学 Glauber 模型视为夸克胶子等离子体 (QGP) 的初始模型,并以两个碰撞核中带电粒子的源项为初始电磁场的麦克斯韦方程组解。在 √ s NN = 200 GeV 的 Au-Au 和 Cu-Au 碰撞中,使用这些初始条件进行 RRMHD 模拟。我们根据 RRMHD 导致的电荷分布,计算了两次碰撞中电荷奇数对定向流 ∆ v 1 和椭圆流 ∆ v 2 的贡献。结果表明,∆ v 1 和 ∆ v 2 与介质的电导率 ( σ ) 大致成正比。在 σ = 0 时。 023 fm − 1 情况下,∆ v 1 的结果与 Au-Au 碰撞中的 STAR 数据一致。此外,在 Cu-Au 碰撞中,∆ v 1 在 η = 0 时具有非零值。我们得出结论,电荷相关的各向异性流是提取高能重离子实验中 QGP 介质电导率的良好探针。
在光子纳米结构内的激光光的帮助下,电子的加速度代表了微波驱动的加速器的微型替代品。主要优点是,较高的驾驶有助于介电材料的损伤阈值达到10 GV/m。这意味着应达到超过1 GEV/m的加速度梯度。此外,光学加速器的结构大小位于纳米范围内,这意味着可以采用纳米化方法来构建加速器结构。在追求这些目标时,我们展示了一种可扩展的纳米光线性电子加速器,该线性电子加速器通过交替相位效力(APF)方案一致地结合了粒子加速度和横梁限制。它在仅225 nm宽的通道中加速和引导电子在500μm的相当距离内。观察到的最高能量增益为43%,从28.4 KEV到40.7 KEV。我们希望这项工作为纳米光加速器铺平道路。这些片上粒子加速器可能会在医学,工业,材料研究和科学中施加适用的应用。在这次演讲中,我们将提供纳米素化加速器的状态更新。
在耦合微观聚结模型的输运模型中,研究了√sNN=2.4GeV时20-30%Au+Au碰撞中心性中质子和氘的有向和椭圆流及其标度特性.结果表明,用同位旋和动量相关的核平均场模拟的不可压缩率K0=230MeV的流动及其标度特性与HADES数据有很好的拟合度,而常用的动量无关的核平均场模拟的流动及其标度特性只能部分拟合HADES数据.此外,通过检查√sNN=2时0-10%Au+Au碰撞中心性中质子和氘的快度分布,发现用同位旋和动量相关的核平均场模拟的流动及其标度特性与HADES数据有很好的拟合度. 4 GeV,我们发现,用动量无关的核平均场模拟的氘核快度分布被低估了,而质子的快度分布被高估了。相反,用同位旋和动量相关的核平均场模拟的质子和氘核快度分布与 HADES 数据高度一致。我们的发现意味着,核平均场的动量依赖性是理解核物质性质和成功解释 HADES 数据的一个不可避免的特征。
极快变异性的起源是Blazars伽马射线天文学中的长期问题之一。尽管许多模型解释了较慢,能量较低的可变性,但它们无法轻易考虑到达到每小时时间尺度的快速流动。磁重新连接是将磁能转化为重新连接层中相对论颗粒加速的过程,是解决此问题的候选解决方案。在这项工作中,我们在统计比较中采用了最新的粒子模拟模拟,观察到了众所周知的Blazar MRK 421的浮雕(VHE,E> 100 GEV)。我们通过生成模拟的VHE光曲线来测试模型的预测,这些曲线与我们开发的方法进行了定量比较,以精确评估理论和观察到的数据。通过我们的分析,我们可以约束模型的参数空间,例如未连接的等离子体的磁场强度,观察角度和大黄色射流中的重新连接层方向。我们的分析有利于磁场强度0的参数空间。1 g,相当大的视角(6-8°)和未对准的层角度,对多普勒危机的强烈候选危机进行了强大的解释,通常在高同步器峰值峰值的射流中观察到。
空间环境的空间环境对太空行程包含主要危害,其中包括空间辐射和微型度量,如图1所示。空间辐射主要由电子和质子,太阳颗粒事件(SPE)和银河宇宙辐射(GCR)组成。SPE是来自太阳的高能电荷颗粒的数量很高(每单位时间)的事件。它们可以源自太阳浮动部位置或与冠状质量弹出相关的冲击波。GCR由高能电荷颗粒组成,该颗粒源自大型恒星的超新星和活性银河核。它从各个方向击中月球,火星,小行星和航天器,并且总是以背景辐射为单位。GCR是由核(完全离子化原子)的原始构成的,以及来自电子和正面的较小贡献(约2%)。1具有高原子数(z> 10)和高能量(E> 100 GEV)的GCR颗粒的小但很重要的成分。1这些高原子数,高能量(HZE)离子颗粒仅占总GCR含量的1-2%,但它们与非常高的特种离子化相互作用,因此贡献了约50%的长期空间辐射剂量的长期辐射剂量。2这些GCR颗粒,