1)来自A. vasilescu(inpe bucharest)和G.lindström(Univ。汉堡)2)P.J.Griffin等人,Sand92-0094(Sandia Natl。实验室93),私人。comm。1996 3)Konobeyev,Alexander Yu。等。“核数据研究在辐照材料的损伤下,核子的能量高达25 GEV。” 4)Huhtinen,M。和P. A. Aarnio。“ pion诱导硅设备中的位移损伤。” 5)Summers,G。P.,E。A. Burke,P。Shapiro等。“暴露于伽马,电子和质子辐射的半导体中的损伤相关性。” https://doi.org/10.1109/23.273529。6)Huhtinen,M。“模拟硅中的非离子能量损失和缺陷形成。” https://doi.org/10.1016/s0168-9002(02)01227-5。7)Gurimskaya,Yana等。“用质子和中子照射的P型EPI EPI硅垫二极管的辐射损伤。” https://doi.org/10.1016/j.nima.2019.05.062。
基于输运模型,结合现实的三维体介质展开,研究了粲偶素定向流。非中心对称核-核碰撞可以产生具有对称破缺纵向分布的旋转夸克胶子等离子体(QGP)。在√sNN=200GeVAu+Au半中心碰撞中,粲偶素在初始硬过程中原始产生,它们主要被初始高温倾斜源解离,然后移出体介质,以保留介质的早期信息。原始产生的粲偶素的动量分布受QGP流体动力学膨胀的影响较小,因为其倾斜形状被稀释。这种有偏解离可以产生J/ψ和ψ(2S)的定向流,它们比轻带电强子和开重味子的值大得多。粲偶素定向流有助于量化原子核-原子核碰撞中 QGP 初始能量密度的快度奇数分布。
高能立体系统(H.E.S.S.)是位于纳米比亚Khomas Highland的五个成像大气Cherenkov望远镜的阵列。H.E.S.S. 通过检测到极高的能量伽玛射线与地球大气相互作用时,观察到GEV上方的伽马射线。 H.E.S.S. 数据采集系统(DAQ)协调夜间望远镜操作,以确保各个组件能够正确通信并按预期行事。 它还提供了指导操作的望远镜与移动人员之间的接口。 DAQ既包含硬件和软件,并且自H.E.S.S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. 有能力。 最近,这包括对托管DAQ软件的整个计算集群的升级,以及在大型28M H.E.S.S. 望远镜。 我们讨论了已升级的DAQ的表现以及从这些活动中学到的经验教训。H.E.S.S.通过检测到极高的能量伽玛射线与地球大气相互作用时,观察到GEV上方的伽马射线。H.E.S.S.数据采集系统(DAQ)协调夜间望远镜操作,以确保各个组件能够正确通信并按预期行事。它还提供了指导操作的望远镜与移动人员之间的接口。DAQ既包含硬件和软件,并且自H.E.S.S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S.有能力。最近,这包括对托管DAQ软件的整个计算集群的升级,以及在大型28M H.E.S.S.望远镜。我们讨论了已升级的DAQ的表现以及从这些活动中学到的经验教训。
编辑器:F。Gelis QCD与字符串模型之间的关系是探索Quarks之间相互作用潜力的宝贵观点。在这项研究中,我们研究了与加速观察者所经历的临床相关的手性对称性的恢复。利用Schwinger模型,我们分析了Quark-Antiquarks之间的弦或染色体孔管的临界点,而夸克之间的分离增加。在这项研究中,确定Quark-Antiquark染色器式孔管或弦弦断裂的临界距离为𝑟= 1。294±0。040 FM。与此临界点相对应的加速度和未温度的温度表示系统的手性对称性从断裂状态到恢复状态的过渡。我们对临界加速度的估计值(𝑎=1。14×10 34 cm/s 2)和未温度(𝑇= 0。038 GEV)与以前的研究保持一致。此分析在夸克相互作用的背景下,阐明了手性对称性恢复,效果的效果以及弦乐或铬发射器的破裂之间的相互作用。
几个天体物理观察结果表明,宇宙的大部分质量是由一种新型物质制成的,称为暗物质,而不是与光相互作用。dm可以由新颗粒的黑暗扇区组成,该颗粒在新的U(1)仪表玻色孔中充满了与普通光子的混合,称为深光子。CERN的NA64E实验旨在使用100 GEV电子束在厚的活性靶标(电磁热量计)上产生和检测DS颗粒。Na64e中DS颗粒的检测是通过“缺失的能量”技术发生的。到目前为止,NA64E在1 MeV 与ERC资助的Project Project Poker结合使用,从2022年NA64E开始也以正电子束收集数据,以利用由于正电子共振灭绝过程而导致的DS产量增强。 这项工作列出了Na64e测量结果的最新结果,包括电子和正电子梁。与ERC资助的Project Project Poker结合使用,从2022年NA64E开始也以正电子束收集数据,以利用由于正电子共振灭绝过程而导致的DS产量增强。这项工作列出了Na64e测量结果的最新结果,包括电子和正电子梁。
列出了一些搜索标准模型玻色子的超对称伙伴的电动伴侣和带电的瘦素的搜索结果的组合。所有搜索都使用Proton-Proton碰撞数据√s= S = 13 TEV在2016 - 2018年在LHC处记录的CMS检测器。分析的数据对应于高达137 fb -1的集成光度。结果是用简化的超对称模型来解释的。使用这种组合添加了两种新解释:与Bino作为最轻的超对称粒子的模型频谱,以及质量分类的希格斯诺诺斯(Higgsinos)衰减到Bino和标准模型玻色子,以及先前研究的Slepton对生产模型的压缩 - 光谱区域。采用了改进的分析技术来优化Wino和Slepton对生产模型中压缩光谱的敏感性。结果与标准模型的期望一致。组合提供了模型参数空间的更全面的覆盖范围,而不是分裂搜索,将排除量最多扩大了125 GEV,并且针对质量覆盖范围中的一些中间差距。
Abstract Hindcast or Wave Reanalysis Data Bases (WRDB) constitute a pow- erful source with respect to instrumental records for the design of offshore and coastal structures, since they offer important advantages for the statistical char- acterization of wave climate variables, such as continuous long time records of significant wave heights, mean and peak periods, etc.然而,重新分析数据不如仪器记录准确,这使得极端数据分析从易于预测设计回报周期值下降。本文提出了一个混合的极值(MEV)模型来处理最大值,以充分利用i)i)后播或波浪重新分析,ii)仪表记录,从而降低了其预测的不确定性。所产生的混合模型始终如一地合并了两种数据集给出的信息,并且可以应用于任何极值分析分布,例如GEV或Pareto-Poisson。使用合成生成和真实数据进行了说明,后者取自西班牙北部海岸的特定地点。
migdal效应[1],其中核散射在理论上诱导了原子,分子或固体中的电子激发,但从未在实验中得出结论。主要的挑战是与弹性散射相比非常小的速率,结合了将原发性米格达事件与普通弹性核削减后的二次电子激发或电离的难度。已经提出了Migdal效应来搜索子GEV暗物质,以此作为一种通过电子激发信号逃避核后坐力阈值的方法[2-16],但首先必须使用标准模型探针观察到这种效果以校准它[17-21]。在本文中,是出于与暗物质检测相关的分子migdal效应的最新发展的动机[22],我们提出了一个新概念来测量Migdal效应。低能(〜100 eV)中子束用于通过分子气中的核散射(例如碳一氧化碳(CO))诱导结合的Migdal转变,概率约为每个中子散射事件,导致紫外线的发射和可见光子的发射
离子束通常用于测试微电子器件中的单粒子效应 (SEE) [5],特别是用于空间和加速器应用 [6-9],其中电子设备需要在高辐射场中高可靠性地工作。全世界的大多数测试都是在较低能量下进行的,通常为每核子 10 至 100 MeV。CERN 的 SPS 加速器是一个独特的设施,因为它能够使用超高能量范围(每核子数百 GeV)。利用这些能量的主要原因是,测试工程师可以研究相对较高的线性能量转移 (LET) 与同时具有高穿透力的光束相结合的效果。这一事实允许将多个电路板一个接一个地堆叠并以中等程度的光束衰减进行并行测试 [10]。此外,离子在组件的整个敏感体积内保持恒定的 LET,这更易于 SEE 的数据分析。此外,无需取下微芯片的盖子和外壳,这些操作可能特别困难
摘要:介绍了一种在最终状态下寻找一个顶夸克且横向动量缺失的事件的方法。通过选择具有重建的增强顶夸克拓扑结构的事件(这些事件与较大的横向动量缺失有关),探索顶夸克的完全强子衰变。分析使用了 2015-2018 年大型强子对撞机的 ATLAS 探测器记录的 139 fb − 1 个质子-质子碰撞数据,质心能量为 √ s = 13 TeV。结果是在暗物质粒子产生和单个矢量类 T 夸克产生的简化模型的背景下解释的。在没有明显超出标准模型预期的情况下,获得了相应截面的 95% 置信度上限。对于标量(矢量)介质的质量高达 4 的情况,不包括与单个顶夸克相关的暗物质粒子的产生。 3 (2.3) TeV,假设 m χ = 1 GeV,模型耦合 λ q = 0.6 和 λ χ = 0.4(a = 0.5 和 g χ = 1)。假设与顶夸克的耦合 κ T = 0.5 且 T → Zt 的分支率为 25%,则对于低于 1.8 TeV 的质量,不会产生单个矢量 T 夸克。