●本课程分别列为11-741(研究生12个单位)和11-441(本科生的9个单位)。●11-741名学生必须完成所有5份家庭作业,并在期中和期末考试中回答所有问题。●11-441名学生必须在总共5个家庭作业(通过自己的选择)和70%的考试问题(通过自己的选择)中进行4分。如果本科生选择做更多的家庭作业,我们将在最终的HW分级中使用最优秀的4分。同样,如果本科生选择做更多的考试问题,我们将使用考试评分中70%最佳回答问题的分数。●详细的作业描述如下: - HW1。实施神经网络(CNN和RNN)进行二进制分类,并在Yelp评论数据集中使用单词嵌入,并使用TensorFlow或Keras等软件。> HW2。实现Yelp评论的多类分类的软马克斯逻辑回归,并通过损失函数的梯度推导。- HW3。实施Pagerank,个性化的Pagerank和查询敏感的Pagerank方法,用于网页流行度分析并评估其在Citeeval数据集中的检索性能。> HW4。实现图形神经网络(GNN)模型,用于SIMI监督节点分类,链接预测和图形分类。> HW5。知识图推理;带有transe的节点。
有机阴离子运输多肽(OATP)对于肝药物摄取至关重要,影响了药物疗效和毒性。预测OATP介导的药物相互作用(DDIS)由于结构性数据有限和整个研究的实验性OATP抑制数据而具有挑战性。这项研究介绍了异质的OATP-rigand相互作用图神经网络(HOLI-GNN),这是一种新型的计算方法,将分子建模与图神经网络相结合,以增强OATP介导的药物抑制的预测。通过将配体分子特征与蛋白质配体相互作用数据相结合,Holi-GNN的表现优于传统的基于配体的方法。与基于ECFP和RDKIT的模型相比,HOLI-GNN的中位数F1和AUC得分分别为0.78和0.90,分别基于XGBoost(F1:0.68和0.78; AUC:0.70和0.75)。除了改善抑制预测之外,我们还表征了与抑制性药物相互作用相对于非抑制性药物相互作用的蛋白质残基,特别是突出了残基T42,F224,I353,F356和F386。我们推测这些疏水堆积残基或抑制作用的局部位置可能是竞争性抑制机制的重要方面。我们的模型增强了OATP抑制剂预测的性能,并批判性地提供了可解释的交互信息,以告知未来的机械调查。
摘要:当代社会中简短的视频应用程序的普遍存在是由于在移动设备上广泛采用Tiktok的概括而来的。该平台不断升级的用户率和参与时间持续时间表明其影响不断增长。本文研究了Tiktok算法处理广泛的数据集以策划和推荐用户偏爱的内容的能力。通过大学人群中各个年龄人口的一系列调查和分析研究进行,这项研究强调了元数据标签的关键作用和该平台的自主增强算法。By harnessing advanced machine learning and artificial intelligence technologies—such as Graph Neural Networks (GNN), Reinforcement Learning (RL), Temporal Convolutional Networks (TCN), Natural Language Processing (NLP), Generative Adversarial Networks (GANs), and Attention Mechanisms—TikTok effectively tailors its algorithmic learning to user interactions.这种战略整合允许逐步完善用户建议,促进个性化的内容交付,同时确保隐私并提高内容和用户参与度的整体质量。该研究的发现表明,这些技术整合使Tiktok能够更准确地辨别用户的偏好,从而促进提供更多引人入胜且相关的内容。最终,这些改进对平台上的用户体验的丰富具有重大影响。
量子计算提供了一种有希望的途径来降低日益增长的机器学习模型复杂性,这是天气预报、财务预测或工程的大型语言模型和模拟模型所必需的。图神经网络是一类特殊的机器学习模型,因其能够很好地处理结构化数据而备受关注。我们研究如何增强现有的 GNN,并通过归纳偏差发现量子电路最适合用于编码节点特征。提出的量子特征嵌入 (QFE) 将原始输入特征转换为量子态,从而实现非线性和纠缠表示。特别是,QFE 在指数级更大的特征空间中提供规范化、非冗余的权重矩阵,并且所需的量子比特比完全量子图神经网络少得多。在标准图基准数据集上,我们展示了对于相同参数数量,QFE 的表现优于其经典对应物,并且能够匹配指数级更大的模型的性能。最后,我们研究了在具体用例激光切割上使用混合量子图神经网络相对于经典替代方案的潜在优势。我们发现所提出的模型具有提升这些商业应用的性能,因此在短期内有潜力。
虽然消息传递图神经网络会导致信息丰富的节点嵌入,但它们可能无法描述图的拓扑特性。为此,节点滤波已被广泛用作使用持久图获得图的拓扑信息的一种尝试。然而,这些尝试面临着失去节点 - 床上用品信息的问题,这反过来又阻止了它们提供更具表现力的图表。为了解决这个问题,我们将重点转移到边缘效果上,并引入了一种新颖的基于边缘的持久性持续图,称为拓扑边缘图(TED),该图被数学证明可以保留节点嵌入信息以及包含其他拓扑信息。要实现TED,我们提出了一种基于神经网络的算法,名为“线图越vietoris-rips”(LGVR)持久图,该图通过将图形转换为其线图来提取边缘信息。通过LGVR,我们提供了两个模型框架,可以应用于任何传递GNN的消息,并证明它们比Weisfeiler-Lehman型着色更强大。最后,我们从经验上验证了模型在几种图形分类和回归基准上的出色性能。关键字:图形神经网络,持久图,拓扑数据分析,Weisfeiler-Lehman测试,越野透 - rips过滤
磁共振成像(MRI)等神经成像技术的快速发展促进了我们获取大脑结构和功能特征。脑网络分析是从 MRI 探索大脑机制的重要工具之一,它为大脑组织提供有价值的见解,并促进对大脑认知和神经退行性疾病病理的理解。图神经网络(GNN)通常用于脑网络分析,但它们受到医疗数据稀缺的限制。虽然已经开发了图对比学习方法来解决这个问题,但它们通常涉及扭曲大脑解剖结构的图增强。为了应对这些挑战,本文提出了一种无增强的对比学习方法,即基于自促进聚类的对比学习(SPCCL)。具体而言,通过引入基于聚类的对比学习损失和自促进对比对创建方案,所提出的 SPCCL 可以从比疾病患者数据相对容易获取的其他健康受试者数据中进行预训练。所提出的 SPCCL 利用这些额外的数据来保持原始大脑结构的完整性,使其成为一种有效的大脑网络分析的有前途的方法。在开放获取的精神分裂症数据集上进行了全面的实验,证明了所提出方法的有效性。
量子计算提供了一种有希望的途径,可根据大型语言模型和天气预报,财务预测或工程的模拟模型中的要求减少生长的机器学习模型复杂性。图形神经网络是一种特定类别的机器学习模型,它们能够很好地处理结构化数据。我们研究了如何增强现有的GNN,并通过电感偏差找到量子电路最适合编码节点特征的偏差。所提出的量子特征嵌入(QFE)将原始输入特征转换为量子状态,从而实现非线性和纠缠表示。尤其是,QFE在指数较大的特征空间中提供了归一化的,非冗余的重量矩阵,并且比完全量子图神经网络所需的量子量要少得多。在标准图基准数据集中,我们展示的是,对于相同的参数计数,QFE的性能优于其经典对应物,并且能够匹配指数较大的模型的性能。最后,我们研究了在混凝土用例,激光切割上使用混合量子图神经网络的潜在优势。我们发现所提出的模型具有提高这些业务应用程序的绩效,因此具有近期潜力。
摘要。人类大脑是复杂神经生物系统的核心,其中的神经元、电路和子系统以神秘的方式相互作用。了解大脑的结构和功能机制一直是神经科学研究和临床疾病治疗的有趣追求。将人类大脑的连接映射为网络是神经科学中最普遍的范例之一。图神经网络 (GNN) 最近成为一种对复杂网络数据进行建模的潜在方法。另一方面,深度模型的可解释性较低,这阻碍了它们在医疗保健等决策关键环境中的使用。为了弥补这一差距,我们提出了一个可解释的框架来分析特定于疾病的兴趣区域 (ROI) 和突出的连接。所提出的框架由两个模块组成:一个面向大脑网络的疾病预测骨干模型和一个全局共享的解释生成器,该生成器突出显示特定于疾病的生物标志物,包括显着的 ROI 和重要连接。我们对三个真实的脑部疾病数据集进行了实验。结果验证了我们的框架可以获得出色的性能并识别有意义的生物标志物。该工作的所有代码均可在 https://github.com/HennyJie/IBGNN 上找到。
摘要。人类大脑是复杂神经生物系统的核心,其中的神经元、电路和子系统以神秘的方式相互作用。了解大脑的结构和功能机制一直是神经科学研究和临床疾病治疗的有趣追求。将人类大脑的连接映射为网络是神经科学中最普遍的范例之一。图神经网络 (GNN) 最近成为一种对复杂网络数据进行建模的潜在方法。另一方面,深度模型的可解释性较低,这阻碍了它们在医疗保健等决策关键环境中的使用。为了弥补这一差距,我们提出了一个可解释的框架来分析特定于疾病的兴趣区域 (ROI) 和突出的连接。所提出的框架由两个模块组成:一个面向大脑网络的疾病预测骨干模型和一个全局共享的解释生成器,该生成器突出显示特定于疾病的生物标志物,包括显着的 ROI 和重要连接。我们对三个真实的脑部疾病数据集进行了实验。结果验证了我们的框架可以获得出色的性能并识别有意义的生物标志物。该工作的所有代码均可在 https://github.com/HennyJie/IBGNN.git 上找到。
摘要:药物副作用 (DSE) 或药物不良反应 (ADR) 构成了重要的健康风险,仅在欧洲,每年就有大约 197,000 人死于 DSE。因此,在药物开发过程中,DSE 检测至关重要,ADR 的发生会阻止许多候选分子进行临床试验。因此,DSE 的早期预测有可能大大减少药物开发时间和成本。在这项工作中,数据以非欧几里得方式表示,形式为图的图域。在这样的领域中,分子结构由分子图表示,每个分子图都成为更高级别图中的节点。在后者中,节点代表药物和基因,弧线代表它们的关系。这种关系性质代表了 DSE 预测任务的一个重要新颖性,并且它直接用于预测。为此,提出了 MolecularGNN 模型。这个新的分类器基于图神经网络,这是一种能够以图形形式处理数据的联结模型。该方法是对之前称为 DruGNN 的方法的改进,因为它还能够从基于图形的分子结构中提取信息,从而生成适合特定任务的基于任务的分子神经指纹 (NF)。该架构已在性能方面与其他 GNN 模型进行了比较,表明所提出的方法非常有前景。