摘要 — 药物间相互作用 (DDI) 可能会妨碍药物的功能,在最坏的情况下,它们可能导致药物不良反应 (ADR)。预测所有 DDI 是一个具有挑战性且至关重要的问题。大多数现有的计算模型整合了来自不同来源的以药物为中心的信息,并将它们作为机器学习分类器中的特征来预测 DDI。然而,这些模型失败的可能性很高,尤其是对于所有信息都不可用的新药。本文提出了一种新的超图神经网络 (HyGNN) 模型,该模型仅基于适用于任何药物的简化分子输入线输入系统 (SMILES) 药物串来解决 DDI 预测问题。为了捕捉药物化学结构的相似性,我们从从 SMILES 字符串中提取的药物化学子结构创建了一个超图。然后,我们开发了 HyGNN,它由一个基于注意力机制的新型超图边缘编码器组成,以获得药物作为超边的表示,以及一个解码器来预测药物对之间的相互作用。此外,我们进行了大量实验来评估我们的模型,并将其与几种最先进的方法进行比较。实验结果表明,我们提出的 HyGNN 模型可以有效预测 DDI,并且令人印象深刻地超越基线,最大 F1 得分、ROC-AUC 和 PR-AUC 分别为 94.61%、98.69% 和 98.68%。最后,我们表明我们的模型也适用于新药。索引术语 — 药物-药物相互作用、图神经网络、超图、超图神经网络、超图边缘编码器
运动图像(MI)是在没有身体运动的情况下想象运动的心理过程(Aggarwal和Chugh,2019年)。脑部计算机界面(BCIS)广泛用于中风患者的康复训练(McAvinue和Robertson,2008年)。通过使用MI,可以训练患者对其大脑信号的控制,从而激活有助于运动的设备。这种训练方法被认为可以增强感觉输入,从而导致大脑可塑性改善运动功能(Hwang等,2009)。通过使用脑电图(EEG)分析来捕获患者的运动意图并使他们能够控制外部装置,已证明了这种康复策略的可行性。与传统的运动康复相比,基于脑电图的MI方法可以通过受试者的自主意图进行主动训练,并已证明在中风恢复高原后为患者提供更好的康复结果(Young等人,2014年)。
摘要 - 药物副作用(DSE)对公共卫生,护理系统成本和药物发现过程的影响很大。在发生之前预测副作用的概率是减少这种影响,特别是对药物发现的基础。候选分子可以在进行临床试验之前进行筛查,从而降低参与者的时间,金钱和健康成本。药物副作用是由涉及许多不同实体的复杂生物学过程触发的,从药物结构到蛋白质 - 蛋白质相互作用。为了预测它们的发生,有必要整合来自异质来源的数据。在这项工作中,这种异质数据被整合到图数据集中,表达了不同实体(例如药物分子和基因)之间的关系信息。数据集的关系性质代表了药物副作用预测因子的重要新颖性。图形神经网络(GNN)被利用以预测我们数据集中的DSE,结果非常有希望。gnns是深度学习模型,可以处理图形结构化数据,并且信息丢失最小,并且已应用于各种各样的生物学任务。我们的实验结果证实了使用数据实体之间关系的优点,这表明了该范围中有趣的未来发展。实验还显示了数据的特定子集在确定药物与副作用之间的关联中的重要性。
近年来,图神经网络(GNN)凭借其邻域聚合的特性,在许多领域得到了成功应用,并取得了最佳性能。虽然大多数GNN处理图数据,但原始图数据往往带有噪声或不完整,导致GNN性能不佳。为了解决这个问题,最近出现了一种图结构学习(GSL)方法,通过学习符合基本事实的图结构来提高图神经网络的性能。然而,目前的GSL策略是迭代优化最优图结构和单个GNN,这会在训练中遇到几个问题,即脆弱性和过度拟合。本文引入了一种称为进化图神经网络(EGNN)的新型GSL方法,以提高对对抗性攻击的防御能力并增强GNN性能。与现有的GSL方法通过交替训练方法来优化图结构并增强单个GNN模型的参数不同,本文首次将进化理论应用于图结构学习。具体来说,通过变异操作生成的不同图结构用于进化一组模型参数,以适应环境(即提高未标记节点的分类性能)。然后使用评估机制来衡量生成样本的质量,以便仅保留具有良好性能的模型参数(后代)。最后,保留适应环境的后代并用于进一步优化。通过这个过程,EGNN 克服了图结构学习的不稳定性,并且始终进化出最好的后代,为 GSL 的进步和发展提供了新的解决方案。在各种基准数据集上进行的大量实验证明了 EGNN 的有效性以及基于进化计算的图结构学习的好处。© 2023 由 Elsevier BV 出版
正确捕获图像引导的神经外科术中的术中大脑移位是将术前数据与术中几何形状对准数据的关键任务,以确保准确的手术导航。虽然有限元方法(FEM)是一种经过验证的技术,可以通过生物力学制剂有效地近似软组织变形,但其成功程度归结为准确性和速度之间的权衡。为了解决这个问题,该领域中的最新作品提出了通过培训各种机器学习算法获得的数据驱动模型(例如,随机森林,人工神经网络(ANN)),并通过有限元分析(FEA)的结果来加快预测的速度。但是,这些方法在训练过程中没有说明有限元(Fe)网格的结构,以提供有关节点连接性的信息以及它们之间的距离,这可以帮助基于与其他网状节点的强力负载点的接近近似组织变形。因此,这项工作提出了一个新颖的框架Physgnn,该模型是通过利用图形神经网络(GNN)来近似于FEM解决方案的模型,该模型能够考虑到网格结构信息,并在未结构化的网格和复杂的拓扑结构上考虑网格结构信息和归纳性学习。从经验上讲,我们证明了所提出的体系结构有望准确且快速的软组织变形近似,并且与最新的ART(SOTA)算法具有竞争力,同时有望增强计算可行性,因此适用于神经外科设置。
功能磁共振成像(fMRI)是研究大脑功能的最常见成像模态之一。最新的神经科学的研究压力由fMRI数据构建的功能性脑网络的巨大潜力,以进行临床预测。传统功能大脑网络是嘈杂的,并不意识到下游预测任务,同时也与深图神经网络(GNN)模型不兼容。为了完全释放GNN在基于网络的fMRI分析中的力量,我们开发了FBNet-Gen,这是一种通过深脑网络生成的任务感知和可解释的fMRI分析框架。尤其是我们制定(1)关注的关注区域(ROI)具有提取,(2)脑网络的生成,以及(3)在特定预测任务的指导下,在可端到端的可训练模型中,用GNNS进行了临床预测。随着过程,关键的新颖组件是图形生成器,该图形学会将原始的时间序列特征转换为以任务为导向的大脑网络。我们的可学习图还通过突出与预测相关的大脑区域来提供独特的解释。在两个数据集上进行了全面的实验,即最近发布且目前最大的公开利用FMRI数据集青少年脑认知发展(ABCD)和广泛使用的FMRI数据集PNC,证明了FBNETGEN的卓越有效性和可解释性。该实现可在https://github.com/wayfear/fbnetgen上获得。关键字:fMRI,大脑网络,图形生成,图形神经网络
摘要 — 工艺变化和器件老化给电路设计人员带来了巨大的挑战。如果不能准确了解变化对电路路径延迟的影响,就无法正确估计用于防止时序违规的保护带。对于先进技术节点,这个问题更加严重,因为晶体管尺寸达到原子级,既定裕度受到严重限制。因此,传统的最坏情况分析变得不切实际,导致无法容忍的性能开销。相反,工艺变化/老化感知静态时序分析 (STA) 为设计人员提供了准确的统计延迟分布。然后可以有效地估计较小但足够的时序保护带。但是,这种分析成本高昂,因为它需要密集的蒙特卡罗模拟。此外,它需要访问机密的基于物理的老化模型来生成 STA 所需的标准单元库。在这项工作中,我们采用图神经网络 (GNN) 来准确估计工艺变化和器件老化对电路内任何路径延迟的影响。我们提出的 GNN4REL 框架使设计人员能够快速准确地进行可靠性评估,而无需访问晶体管模型、标准单元库甚至 STA;这些组件都通过代工厂的训练整合到 GNN 模型中。具体来说,GNN4REL 是在 FinFET 技术模型上进行训练的,该模型根据工业 14 nm 测量数据进行了校准。通过对 EPFL 和 ITC-99 基准以及 RISC-V 处理器的大量实验,我们成功估计了所有路径的延迟退化(尤其是在几秒内),平均绝对误差低至 0。01 个百分点。
摘要 - 功能连接在现代神经科学中起着至关重要的作用。这种方式阐明了大脑的功能和结构方面,包括多种病理背后的机制。这样的病理学是精神分裂症,通常是听觉言语幻觉。通常通过观察语音处理过程中的功能连接来研究后者。在这项工作中,我们通过对三组人的深度学习在二分法聆听任务期间对功能连通性进行了深入研究:精神分裂症患者有或没有听觉的语言幻觉和健康的对照。我们提出了一个基于图形神经网络的框架,在该框架中,我们将脑电图数据表示为图域中的信号。框架允许一个到1)根据脑电图记录预测脑精神障碍,2)将听力状态与每个组的静止状态区分开,3)识别特征性的任务范围内的结合。实验结果表明,所提出的模型可以区分以最先进的性能的上述组。此外,它还为研究人员提供了有关每个组功能连接性的有意义的信息,我们在当前的域知识上验证了这些信息。
动机:由于药物与药物相互作用(DDI)数据集和大型生物医学知识图(kgs)的可用性不断提高,因此使用机器学习模型可以准确检测不良DDI。然而,这在很大程度上仍然是一个开放的问题,如何有效利用大型和嘈杂的生物医学kg进行DDI检测。由于其巨大的大小和公斤的噪音量,将KG与其他较小但较高质量的数据直接整合在一起通常是不那么好处(例如实验数据)。大多数现有方法完全忽略了kgs。有些试图通过图形神经网络将KG与其他数据直接集成在一起,成功有限。此外,大多数预先的作品都集中在二进制DDI预测上,而多型DDI药理学效应预测更有意义但更艰巨的任务。结果:要填补空白,我们提出了一种新方法sumgnn:知识汇总图形神经网络,该网络可以通过子图提取模块来启用,该模块可以有效地锚定在kg的相关子图上的基于自我意见的基于子分类的知识中的相关子图中的相关范围,以生成多个元素的知识和数据集成的多个频道和数据集成的频道和数据。 significant- ly improved multi-typed DDI predictions.sumgnn的表现优于最佳基线高达5.54%,而在低数据关系类型中,绩效增长尤为重要。此外,SUMGNN通过每个预测的生成的推理路径提供了可解释的预测。可用性和实施:该代码可在补充材料中找到。联系人:cao.xiao@iqvia.com补充信息:补充数据可在Online Bioinformatics获得。
基于 LiDAR 的 3D 物体检测是自动驾驶的一项重要任务,当前的方法受到远处和遮挡物体的稀疏和部分点云的影响。在本文中,我们提出了一种新颖的两阶段方法,即 PC-RGNN,通过两个特定的解决方案来应对此类挑战。一方面,我们引入了一个点云完成模块来恢复密集点和整个视图的高质量提案,同时保留原始结构。另一方面,设计了一个图神经网络模块,该模块通过局部-全局注意机制以及基于多尺度图的上下文聚合全面捕捉点之间的关系,大大增强了编码特征。在 KITTI 基准上进行的大量实验表明,所提出的方法比以前最先进的基线方法有显著的进步,凸显了其有效性。