量子计算提供了一种有希望的途径来降低日益增长的机器学习模型复杂性,这是天气预报、财务预测或工程的大型语言模型和模拟模型所必需的。图神经网络是一类特殊的机器学习模型,因其能够很好地处理结构化数据而备受关注。我们研究如何增强现有的 GNN,并通过归纳偏差发现量子电路最适合用于编码节点特征。提出的量子特征嵌入 (QFE) 将原始输入特征转换为量子态,从而实现非线性和纠缠表示。特别是,QFE 在指数级更大的特征空间中提供规范化、非冗余的权重矩阵,并且所需的量子比特比完全量子图神经网络少得多。在标准图基准数据集上,我们展示了对于相同参数数量,QFE 的表现优于其经典对应物,并且能够匹配指数级更大的模型的性能。最后,我们研究了在具体用例激光切割上使用混合量子图神经网络相对于经典替代方案的潜在优势。我们发现所提出的模型具有提升这些商业应用的性能,因此在短期内有潜力。
I. i tratotuction for Graphs(DNNG)代表了一个新兴领域,该领域研究如何将深度学习方法推广到图形结构化数据。由于图是一种功能强大且灵活的工具,可代表模式及其关系形式的复杂信息,从分子到蛋白质到蛋白质相互作用网络,再到社交或运输网络,或者在知识图上,或者在非常不同的范围内建模系统,这些方法已被用于许多应用领域。Since the pioneering works on trees, namely Recursive Neural Networks [1], [2], and directed acyclic graphs [3], [4], up to methods extended to general graphs, both by recursive approaches (namely Graph Neural Networks (GNNs) [5], [6]), or Graph Convolutional Network approaches (namely NN4Gs [7], GCNs, etc.),已经提出了许多用于图的神经模型[8],[9]。此外,除了纯神经网络范式之外,已经引入了术语深图网络(DGN),还包括基于贝叶斯的和生成的图形网络[9]。特别是在2015年之后,已经引入了更广泛的模型,并且在其各种化身中,DNNG和DGNS已成为图形表示在学习任务中的显着能力(例如节点分类,图形分类,图形分类,图形,图形和链接预测)的强烈研究的话题。目睹了对该领域的兴趣,已经出现了许多调查,例如[8],[9]和调查文件[8]获得了2024 IEEE TNNLS杰出纸质奖。但是,这一研究和应用领域仍然具有很高的活力且不断增长[10]。的确,DNNG和相关领域的越来越多的作品表明,学术和工业社区对开发更先进的技术和算法的需求仍然相当大,请考虑包含可信赖的
人脑是神经生物系统的中央枢纽,以复杂的方式控制行为和认知。神经科学和神经影像分析的最新进展表明,人们对大脑感兴趣区域(ROI)之间的相互作用及其对神经发育和疾病诊断的影响越来越感兴趣。作为分析图结构数据的强大深度模型,图神经网络(GNN)已被应用于脑网络分析。然而,训练深度模型需要大量标记数据,由于数据获取的复杂性和共享限制,这些数据在脑网络数据集中往往很少。为了充分利用可用的训练数据,我们提出了 PTGB,这是一个 GNN 预训练框架,它可以捕捉内在的脑网络结构,而不管临床结果如何,并且很容易适应各种下游任务。 PTGB 包含两个关键组件:(1)专为大脑网络设计的无监督预训练技术,能够从没有特定任务标签的大规模数据集中学习;(2)数据驱动的分区图谱映射管道,可促进具有不同 ROI 系统的数据集之间的知识转移。使用各种 GNN 模型进行的广泛评估表明,与基线方法相比,PTGB 具有稳健且卓越的性能。
虽然消息传递图神经网络会导致信息丰富的节点嵌入,但它们可能无法描述图的拓扑特性。为此,节点滤波已被广泛用作使用持久图获得图的拓扑信息的一种尝试。然而,这些尝试面临着失去节点 - 床上用品信息的问题,这反过来又阻止了它们提供更具表现力的图表。为了解决这个问题,我们将重点转移到边缘效果上,并引入了一种新颖的基于边缘的持久性持续图,称为拓扑边缘图(TED),该图被数学证明可以保留节点嵌入信息以及包含其他拓扑信息。要实现TED,我们提出了一种基于神经网络的算法,名为“线图越vietoris-rips”(LGVR)持久图,该图通过将图形转换为其线图来提取边缘信息。通过LGVR,我们提供了两个模型框架,可以应用于任何传递GNN的消息,并证明它们比Weisfeiler-Lehman型着色更强大。最后,我们从经验上验证了模型在几种图形分类和回归基准上的出色性能。关键字:图形神经网络,持久图,拓扑数据分析,Weisfeiler-Lehman测试,越野透 - rips过滤
随着物联网(IoT)的服务质量的提高(QoS)要求,移动边缘计算(MEC)无疑已成为一个新的范式,用于在用户设备(UE)附近找到各种资源,以减轻骨干iot Net-Net-Net-Net-Works的工作量。深度加固学习(DRL)已成为首选的概念,这主要是由于它可以指导每个用户设备(UE)在动态环境中做出适当决策的能力。但是,传统的DRL算法无法完全利用MEC图中设备之间的关系。在这里,我们指出了两个典型的IoT方案,即,当在UES和交叉分布式服务的编排中生成资源受限的边缘服务器(ESS)中的依赖任务时,任务卸载决策制定,其中系统成本是通过编排层次结构网络最小化的。为了进一步增强DRL的性能,图形神经网络(GNN)及其变异性为广泛的物联网场景提供了有希望的概括能力。我们相应地为上述两个典型情况提供了混凝土解决方案,即图形神经网络策略优化(GNNPPO)和图形神经网络工作 - 工作 - 工程 - 工程增强学习(GNN-MRL),它们将GNN与受欢迎的Actor-Critic方案和新开发的MRL结合在一起。最后,我们指出了四个有价值的研究方向,用于探索AI授权MEC环境的GNN和DRL。
摘要:利用功能性磁共振成像(fMRI)构建功能连接是基于深度学习的脑分析的一个成熟范例。近年来,得益于大规模多模态预训练数据带来的显著有效性和泛化能力,视觉-语言(VL)模型在众多医疗任务中取得了优异的表现。然而,将预训练的 VL 模型应用于脑分析面临着两个重大挑战:(1)缺乏配对的 fMRI-文本数据;(2)从多模态数据构建功能连接。为了应对这些挑战,我们提出了一种 fMRI-文本协同提示学习(fTSPL)流程,该流程首次利用预训练的 VL 模型来增强脑分析。在 fTSPL 中,我们首先提出一种激活驱动的脑区文本生成 (ABTG) 方案,该方案可以自动生成描述每个 fMRI 的实例级文本,然后利用 VL 模型学习多模态 fMRI 和文本表示。我们还通过建立 fMRI 文本表示和脑区嵌入之间的相关性,提出了一种提示增强的多模态功能连接构建 (PMFCC) 方案。该方案作为即插即用的初步方案,可以连接到各种图神经网络 (GNN) 进行大脑分析。在 ABIDE 和 HCP 数据集上的实验表明,我们的流程在脑分类和预测任务上的表现优于最先进的方法。代码可在 https://github.com/CUHK-AIM-Group/fTSPL 获得。
本白皮书介绍了在复杂化学空间的背景下革命性材料发现的创新方法和计算框架的全面探索。利用高级技术,例如图形神经网络(GNN),主动学习框架和密度功能理论(DFT)计算,我们建立了一个数据驱动的,闭环系统,以进行材料预测,验证和优化。Our approach integrates high-throughput simulations, multiscale modeling, and multi-physics coupling to address critical challenges in the design of high-performance materials across diverse domains, including energy storage, quantum information systems, and biomedical applications.Through rigorous model evaluations and experimental validations, we demonstrate the predictive accuracy and generalization capability of our frameworks, achieving substantial breakthroughs in exploring previously未知的化学空间。关键成就包括对离子扩散系数的显着改善,超导体的临界温度预测以及催化效率,所有这些都对实验基准进行了验证。通过进一步扩展我们的算法来支持多尺度模拟并将它们与分布式的开放数据平台集成在一起,这项工作为协作,可扩展和智能材料研究的基础奠定了基础。我们的发现不仅可以通过在计算预测和实验验证之间重新定义材料科学的范围,还可以在批判性的质疑之间启动差距,还可以在关键的领域中解除批判性影响力应用程序。这份白皮书强调了我们方法的技术基础,经过验证的方法和重要的科学贡献,建立了21世纪加速材料发现的新基准。
摘要:运动图像分类对具有移动性障碍的人具有很大的意义,以及如何提取和利用运动图像脑图像(EEG)渠道的有效特征一直是注意力的焦点。有许多不同的方法用于运动临时分类,但是对人脑的有限理解需要更多有效的方法来提取脑电图数据的特征。图形神经网络(GNN)已证明其在分类图结构中的效果。 GNN的使用为大脑结构连接特征提取提供了新的可能性。在本文中,我们提出了一个新的图形神经网络,基于称为MutualGraphnet的原始EEG通道的相互信息。我们使用相互信息作为与空间时间图卷积网络(ST-GCN)相结合的ADJACENCY矩阵可以提取运动成像电脑图(EEG)的过渡规则,更有效地通道数据。实验是在运动图像脑电图数据集上进行的,我们将模型与当前的最新方法进行了比较,结果表明,互助网络足够强大,足以学习可解释的特征并优于当前最新方法。关键字:图形卷积,深度学习,脑电图(EEG),脑部计算机间(BCI)
大脑各区域之间的功能连接 (FC) 可以通过用功能神经成像模式测量的时间相关程度来评估。基于这些连接构建网络的事实,基于图的大脑连接组分析方法为人类大脑的功能提供了见解。能够从图结构化数据中学习表示的图神经网络 (GNN) 的发展,导致人们对学习大脑连接组的图形表示的兴趣日益浓厚。尽管最近将 GNN 应用于 FC 网络的尝试已显示出有希望的结果,但仍存在一个常见的限制,即它们通常不包含随时间波动的 FC 网络的动态特性。此外,一些尝试使用动态 FC 作为 GNN 输入的研究报告称,与静态 FC 方法相比,性能有所下降,并且不能提供时间上的可解释性。在这里,我们提出了 STAGIN,一种使用时空注意来学习大脑连接组的动态图形表示的方法。具体来说,将脑图的时间序列输入到 STAGIN 以获得动态图表示,而新颖的 READOUT 函数和 Transformer 编码器分别提供具有注意力的空间和时间可解释性。在 HCP-Rest 和 HCP-Task 数据集上的实验证明了我们提出的方法的卓越性能。时空注意力的分析还提供了与神经科学知识的并发解释,这进一步验证了我们的方法。代码可在 https://github.com/egyptdj/stagin 获得
正确捕获图像引导的神经外科术中的术中大脑移位是将术前数据与术中几何形状对准数据的关键任务,以确保准确的手术导航。虽然有限元方法(FEM)是一种经过验证的技术,可以通过生物力学制剂有效地近似软组织变形,但其成功程度归结为准确性和速度之间的权衡。为了解决这个问题,该领域中的最新作品提出了通过培训各种机器学习算法获得的数据驱动模型(例如,随机森林,人工神经网络(ANN)),并通过有限元分析(FEA)的结果来加快预测的速度。但是,这些方法在训练过程中没有说明有限元(Fe)网格的结构,以提供有关节点连接性的信息以及它们之间的距离,这可以帮助基于与其他网状节点的强力负载点的接近近似组织变形。因此,这项工作提出了一个新颖的框架Physgnn,该模型是通过利用图形神经网络(GNN)来近似于FEM解决方案的模型,该模型能够考虑到网格结构信息,并在未结构化的网格和复杂的拓扑结构上考虑网格结构信息和归纳性学习。从经验上讲,我们证明了所提出的体系结构有望准确且快速的软组织变形近似,并且与最新的ART(SOTA)算法具有竞争力,同时有望增强计算可行性,因此适用于神经外科设置。