包括 H 2 在内的可再生气体将成为全球能源系统的重要组成部分,旨在到 2050 年实现温室气体 (GHG) 净零排放,与 2015 年《巴黎气候变化协定》中 1.5°C 的目标相一致。IEA 最新发布的 2050 年净零排放情景表明,在严格的温室气体减缓逻辑下,化石气体供应将在 2020 年代中期达到峰值,并在 2050 年之前减少。与此同时,可再生气体(生物甲烷、H 2 、基于 H 2 的合成甲烷)必须大幅增加。重点分析了可再生气体在 2030-2050 年国家温室气体减排政策中的作用以及 2030-2050 年所需数量的相应估计值 3 。所有这些国家(俄罗斯除外)都表示需要在 2030-2050 年期间使用氢气实现经济脱碳,氢气对于实现《巴黎协定》规定的国家承诺具有重大贡献。大多数国家战略和路线图都将氢气视为克服电气化限制和帮助稳定电网的一种手段,以应对不断增长的可再生能源发电(尤其是太阳能和风能)。一些氢气战略解决了长期能源储存需求在弥补可再生电力发电季节性变化方面的潜在作用。一些国家表示他们计划在 2030 年及以后出口氢气,而其他国家则计划进口氢气。除了贸易之外,大多数战略还侧重于国内难以减排的行业的氢气应用,即可再生电气化减排温室气体受到阻碍的行业,例如化学工业、炼钢和运输(航空、长途公路、航运)。几乎所有国家的战略和路线图都强调了现有天然气基础设施在未来 H2 输送和分配中的作用,并将 H2 集群视为在工业和区域 H2 网络中使用 H2 的重要一步。
摘要:建模研究表明,由于大气 CO 2 浓度增加,陆地上地表气温 (SAT) 的增幅大于海洋上表气温的增幅。这种所谓的陆地–海洋变暖对比 f ,定义为陆地平均 SAT 变化除以海洋平均 SAT 变化,是全球变暖的一个显著特征。陆地热容量小不太可能是唯一的原因,因为陆地–海洋变暖对比是在 CO 2 加倍实验的平衡状态下发现的。已经提出了几种不同的机制来解释陆地–海洋变暖对比,但尚未获得全面的理解。在本研究的第一部分中,我们提出了一个基于大气顶部和大气的能量预算来诊断 f 的框架,这使得有效辐射强迫 (ERF)、气候反馈、热容量和大气能量传输异常的贡献能够分解为 f 。利用该框架,我们使用 15 个耦合模式比对计划第六阶段 (CMIP6) 地球系统模型,分析了 SAT 对 CO 2 突然增加四倍的响应。在近平衡状态下(第 121-150 年),f 为 1.49 6 0.11,这主要是由于陆地和海洋的 ERF 和热容量差异引起的。我们发现 ERF、反馈和能量传输异常的贡献往往会相互抵消,导致模型间 f 的扩散较小,而各个组成部分的扩散则较大。在没有热容量贡献的平衡状态下,ERF 和能量传输异常是 f 的主要贡献者,它与平衡气候敏感性呈现出微弱的负相关性。
散装气体 1 适用于专门建造或改装的船舶,无论其总吨位和动力装置输出如何,用于运输在 37.8°C 温度下蒸气压超过 280 kPa 绝对值的液化气体以及技术要求表中列出的其他物质(参见附录 1)。
拟议的大规模制氢系统避免了海上平台、高压阵列间和输出电缆以及大型电力变压器。通过管道运输氢气的成本至少比通过金属电缆运输电力的成本低八倍(BD James 等人,2019 年)。
1.1 适用范围。 1.1.1 《散装运输液化气体船舶入级与建造规范》1 适用于专门建造或改建的船舶,无论其总吨位和动力装置输出功率如何,用于运输散装液化气体(在 37.8°C 温度下蒸气压超过 280 kPa 绝对值)以及技术要求表(附录 1)所列的其他物质。散装运输液化气体的船舶 2 完全符合《海船设备规范》、《海船货物装卸设备规范》和《海船载重线规范》的要求。《海船入级与建造规范》3 在《海船规范》文本规定的范围内适用于 LG 承运人。 1.2 定义和解释。 1.2.1 LG 规范中使用了以下定义。可燃上限是指空气中碳氢化合物气体的浓度,高于该浓度时,没有足够的空气支持和传播燃烧。二级屏障是货物围护系统的防液体外部元件,旨在暂时遏制任何可能通过主屏障泄漏的液体货物,并防止船舶结构温度降低到不安全的水平。气体安全处所是除气体危险处所以外的处所。液化气体运输船是设计用于运载液化气体的船舶。
1.1 适用范围。1.1.1 散装运输液化气体船舶入级与建造规范 1 适用于专门建造或改装的船舶,无论其总吨位和动力装置输出功率如何,用于运输散装液化气体(在 37.8°C 温度下蒸气压超过 280 kPa 绝对值)以及技术要求表(附录 1)中列出的其他物质。散装运输液化气体的船舶 2 完全符合《海船设备规范》、《海船货物装卸设备规范》和《海船载重线规范》的要求。《海船入级与建造规范》 3 在《海船规范》文本规定的范围内适用于液化气体运输船。1.2 定义和解释。1.2.1 液化气体规范中使用以下定义。可燃上限是指空气中烃类气体的浓度,高于该浓度时,空气不足以支持和传播燃烧。二级屏障是货物围护系统的防液体外部元件,旨在暂时围护任何可能通过主屏障泄漏的液体货物,并防止船舶结构温度降低到不安全的水平。 液化石油气运输船是设计用于运输技术要求表(附录 1)所列的液化气体和其他散装产品的船舶 ...或其他散装产品的船舶。货物围护系统和货物管道;使用不需要二次屏障的货物围护系统运载货物的货舱处所;用单一气密钢边界与布置需要二次屏障的货物围护系统的货舱处所隔开的处所;货泵房和货物压缩机房;距离任何货舱出口、气体或蒸汽出口、货管法兰或货物阀门或货泵房和货物压缩机房的入口和通风口 3 米范围内的露天甲板或露天甲板上的半封闭处所;货物区域上方的露天甲板,以及露天甲板上货物区域前后 3 米范围内至露天甲板以上 2.4 米高度的区域;货物围护系统外表面 4m 以内,且该表面暴露在天气中;装有产品管道的封闭或半封闭处所。(装有第 VIII 部分“仪器和自动化系统”6.3 规定的气体探测设备的处所和使用蒸发气体作为燃料并符合第 VI 部分“系统和管道”要求的处所不视为气体危险处所);
《散装运输液化气体船舶入级和建造规范》已按照既定的批准程序获得批准,并将于 2019 年 7 月 1 日生效。《散装运输液化气体船舶入级和建造规范》以 2016 年《散装运输液化气体船舶入级和建造规范》为基础,并考虑到了发布时所做的补充和修订。本规范考虑到了 IMO MSC 411(97) 决议、IACS 统一要求 (UR) W1 (2016 年 8 月修订 3)、IACS 统一解释 (UI) GC7 (2016 年 6 月修订 1)、GC8 (2016 年 6 月修订 1)、GC11 (2016 年 2 月修订 1)、GC15 (2016 年 2 月)、GC19 (2017 年 8 月)、GC22 (2019 年 6 月)、GC23 (2018 年 7 月)、GC24 (2018 年 7 月)、IACS 建议书第 34 号、第 149 号、第 150 号和第 152 号以及科学研究编号 15-49152-2015/8/37 的结果。该规则规定了针对散装运输液化气体船舶的具体要求,是对俄罗斯船舶登记册《远洋船舶入级与建造规则》和《远洋船舶装备规则》的补充。
| 稳定的能源供应 PtG 是确保可靠能源供应努力的重要组成部分。它通过利用现有天然气基础设施的理想长期存储容量来促进能源转型。使用 PtG 技术,可再生能源产生的电力首先通过电解转化为氢气。这可以在专有催化反应器中与二氧化碳结合产生甲烷,然后可以不受任何限制地输送到现有的天然气基础设施中。
聚酰亚胺是半导体工业中广泛使用的介电材料。然而,固化反应过程中产生的气体会腐蚀电子电路,从而导致可靠性问题。可以使用 EGA-MS(使用 Double-Shot Pyrolyzer)(技术说明编号 PYA3-001)以及 TGA 研究这种气体释放。图 1 显示了聚酰亚胺薄膜的固化反应。首先,将 BPDA 和 3,3'-DDS 在较低温度下加热以生成聚酰胺酸。接下来,将材料进一步加热到较高温度以生成固化的聚酰亚胺。TGA 曲线(图 2)显示了固化过程中的重量损失。在 100~350ºC 和 350~450ºC 处可以清楚地看到两个不同的反应阶段。图 3 显示了 EGA-MS 对此过程的研究结果。图 2 中第一阶段 TGA 重量损失与图 3 区域 A 中演化的材料相匹配,第二阶段重量损失与区域 B 中的 EGA-MS 数据相匹配。EGA 产生的化合物通过 GC 分离和测定。使用 MS,选择离子监测显示图 3 中一些感兴趣的化合物的分布。这些结果表明,DMAc、CO2 和 H2O 是在固化过程的第一阶段产生的,而 CO2、SO2 和苯胺是在第二阶段产生的。正如这个例子所示,EGA 是解决聚合物材料问题的极其有用的工具。
扩张的超电气体很容易控制的系统,其从根本上通过截距相互作用确定。在具有超重气体的典型实验中,这些作用主要是短侧和各向同性的。近年来已经开始研究新一代的实验,在这种实验中,与长距离相互作用和各向异性二酚二波尔相互作用的其他相互作用起着重要甚至显着的作用。如果偶极气在光学网格中,二旋二波相互作用的古代摄入症引起的效果得到了显着理解。在这项工作中,研究了这种偶性气体系统中的光网格中发生的新现象。