在设施大门上进行手动车辆检查的传统方法不仅耗时,而且容易出现错误和安全失误。此手动过程会导致长期排队,延迟交付和增加人工成本。相比之下,自动化的车辆访问系统利用了高级技术,例如Vision AI,传感器和机器学习来简化流程,以确保只有授权的车辆可以访问,同时最大程度地减少了人类干预。
拓扑光子学为实现更强大的光学器件以抵抗某些缺陷和环境扰动提供了一种有前途的方法。量子逻辑门是量子计算机的基本单元,广泛应用于未来的量子信息处理。因此,构建强大的通用量子逻辑门是实现实用量子计算的重要途径。然而,要解决的最重要的问题是如何构造具有拓扑保护的量子逻辑门所需的 2×2 分束器。本文报道了拓扑保护的反向耦合器的实验实现,该耦合器可用于在硅光子平台上实现量子逻辑门,包括控制非门和阿达玛门。这些量子门不仅具有很高的实验保真度,而且对某些类型的缺陷表现出一定程度的容忍度。这项工作为实用光量子计算和信号处理的发展铺平了道路。
盖茨黑德健康和福利策略阐明了六个主要的政策目标,旨在应对健康不平等的根本原因。这也是支持盖茨黑德蓬勃发展承诺的实施的交付方法。六个政策目标是:•给每个孩子的生活中最好的开端•使所有儿童,年轻人和成人能够最大化自己的能力并对他们的生活进行控制•为所有人创造公平,良好的就业•确保所有人的健康水平•为所有人建立和开发可持续的地方和开发可持续的地方和社区,并增强健康和影响的策略2,以稳定健康和影响,以稳定健康和良好的健康,并稳定健康,并确保稳定的健康和良好的健康状况,并确保稳定的健康状况,并确保良好的健康状况,良好的稳定性,稳定的稳定性,并确保了良好的健康状况。审查该战略并制定一种方法和计划来实施。随着该战略旨在解决跨组织和系统削减复杂的多项式问题,开发一种实施方法以及我们如何共同努力非常重要。商定的健康和福祉策略实施方法和计划分为三个部分:
1 芝加哥大学詹姆斯弗兰克研究所,美国伊利诺伊州芝加哥 60637 2 芝加哥大学物理系,美国伊利诺伊州芝加哥 60637 3 斯坦福大学物理与应用物理系,美国加利福尼亚州斯坦福 94305 4 西北大学物理与天文系,美国伊利诺伊州埃文斯顿 60208 5 耶鲁大学耶鲁量子研究所,美国康涅狄格州纽黑文 06511 6 中国科学技术大学合肥国家微尺度物质科学研究中心和物理科学学院,中国合肥 230026 7 中国科学技术大学上海量子科学研究中心和中科院量子信息与量子物理卓越创新中心,上海 201315 8 普林斯顿大学物理系,美国新泽西州普林斯顿 08544 9 芝加哥大学普利兹克分子工程学院,美国伊利诺伊州芝加哥60637,美国
近年来,可逆的逻辑门引起了人们的重大兴趣,因为它们有可能减少能源消耗并满足对低功率计算系统的不断增长的需求。与传统的逻辑门不同,可逆逻辑门确保在计算过程中不会发生任何信息损失,从而可以逆转整个计算过程。这种独特的特征为开发节能数字电路开辟了新的途径。本评论论文通过解决有关可逆逻辑门的现有文献中明显的差距,是对该领域的重要贡献。这项研究不仅全面分析了可逆的逻辑门,而且也强调了其实际应用和意义。它涵盖了各种可逆的逻辑大门,包括Toffoli Gates,Fredkin Gates和Newer Innovations。发现Toffoli门在门数和量子成本降低方面表现优于量子,使其成为量子电路优化的首选选择。此外,弗雷德金门在特定应用中显示出非凡的性能,例如数据交换和量子状态控制。数字电路等数字电路,例如加法器,多路复用器,ALU等。是使用HNG,DKG等可逆大门成功设计的。这项研究填补的显着差距在于需要对最先进的可逆逻辑门及其现实世界实用程序进行整合和深入分析。虽然先前的研究已经单独讨论了这些大门,但本文通过对其性能,量子成本,门计数和实际应用进行整体评估,从而采用一种新颖的方法,从而为该领域的研究人员,工程师和设计师提供了全面的资源。这种创新的贡献在塑造节能和量子计算系统的进度以及为各种应用中优化VLSI芯片设计方面起着关键作用,并特别强调增强加密和数据处理能力。本综述的发现旨在刺激可逆计算中的进一步研究和开发,从而有助于提高节能和提供信息的计算系统。
量子计算和信息的权威教科书仍然是 Michael A. Nielsen 和 Isaac L. Chuang 的经典著作《量子计算和量子信息》(昵称 Mike and Ike)[ 3 ]。如果你对量子计算有兴趣,你应该买这本书 1 。这些笔记将对这个主题进行不同的探讨,在某些地方会更详细,包含一些较新的材料,但会忽略其他领域,因为没有必要重复 Mike 和 Ike 已经讲过的内容。John Preskill 的讲座笔记 [ 4 ] 是另一篇非常出色的(尽管总是不完整)关于这个主题的论述。有关量子力学的基本介绍,请参阅 Leonard Susskind 和 Art Friedman 撰写的《量子力学:理论最小值》[ 5 ]。传统的量子力学教科书没那么有用,因为它们往往会快速跳过基本面和信息方面,而专注于光、原子、腔体等的具体行为。显然,如果你正在构建一台量子计算机,这些物理细节很重要,但对于编程来说却不那么重要,而且我认为传统方法往往会掩盖量子信息的本质以及量子物理与经典物理的根本区别。但在这样的物理文本中,我推荐 JJ Sakurai [ 6 ] 的《现代量子力学》。有关量子计算的更温和的介绍,请参阅 Eleanor G. Rieffer 和 Wolfgang H. Polak [ 7 ] 的《量子计算:温和介绍》。另一个有趣的是 Andy Matuschak 和 Michael Nielsen 的《量子国度》。这是一门在线量子计算入门课程,内置间隔重复 [ 8 ]。 Scott Aaronson 的《德谟克利特以来的量子计算》[ 9 ] 也是一本不错的入门书,特别是对于计算复杂性理论而言。从数学上讲,量子力学主要是应用线性代数,学习更多的线性代数永远不会错。Ivan Savov [ 10 ] 的《线性代数指南》是一本很好的入门书,Sheldon Axler [ 11 ] 的《线性代数入门》则更深入。若想深入了解量子信息,John Watrous [ 12 ] 的《量子信息理论》和 Mark M. Wilde [ 13 ] 的《量子信息理论》都是很棒的书,尽管分量很重。如果你的孩子还很小,可以让他们从小就开始学习 Chris Ferrie 和 whurely 的《婴儿量子计算》[ 14 ]。
注意: *单点老化和广告风险队列未列出。nk =迟到的是神经变化的实体 - 临床标准尚未定义,并且假定所有较旧的同类群都包含一些尚未知道的NC负担; LBD包括Lewy身体的痴呆症和帕金森氏病痴呆症及其前序。其他缩写:VCID血管认知障碍。领导纵向早期发作AD研究; PPMI Parkinsons的进步标记倡议; DLBC Lewy身体财团;
简介。— 令 ðð n; K; d ÞÞ 表示一个 n 量子比特量子纠错码,其代码空间维度为 K,距离为 d 。Eastin-Knill 定理 [1] 表明,当代码非平凡(d ≥ 2)时,SU ð K Þ 中可以横向实现的逻辑运算始终是有限子群 G ⊂ SU ð K Þ 。如果逻辑门 g 可以实现为 U 1 ⊗ ⊗ U n ,其中每个 U i ∈ U ð 2 Þ ,则称其为横向门。横向门被认为具有天然容错性,因为它们不会在物理量子比特之间传播错误。我们的重点是将单个逻辑量子比特编码为 n 个物理量子比特(K ¼ 2)。在这种情况下,Eastin-Knill 定理表明横向门必须是 SU(2) 的有限子群。SU(2) 的有限子群是循环群、双循环群和三个例外群。我们主要对三个例外群感兴趣:二元四面体群 2T、二元八面体群 2O 和二元二十面体群 2I。这三个群分别对应于四面体、八面体和二十面体的对称群通过双覆盖 SU ð 2 Þ → SO ð 3 Þ 的提升(见图1 )。有关 SU(2) 的有限子群的更多信息,请参阅补充材料 [2] 。群 2O 更广为人知的名字是单量子比特 Clifford 群 C 。许多代码横向实现 2O,例如 ½½ 7 ; 1 ; 3 Steane 代码和 ½½ 2 2 r − 1 − 1 ; 1 ; 2 r − 1 量子穿孔 Reed-Muller 代码。更一般地,所有双偶自对偶 CSS 代码都横向实现 2O。群 2T 是 Clifford 群的一个子群,还有许多代码具有横向门群 2T,最著名的例子是 ½½ 5 ; 1 ; 3 代码。与此形成鲜明对比的是,没有代码被明确证明可以横向实现 2I。考虑到 2I 在 [32] 中提出的“最佳绝对超金门集”中的作用,这一遗漏尤其明显,该集是最佳单量子比特通用门集。
我们于 2018 年推出了 Thrive。这是我们确保将人置于我们所做的一切的核心的方法。Thrive 今天与当时一样重要,同时认识到我们运营的世界已经发生了巨大变化。我们的企业计划是对优先考虑我们为当地人民提供的服务以及最终可用的预算的直接回应。该计划将不断发展,我们将寻求让居民和我们的合作伙伴进一步参与完善该计划。在此过程中,重申我们对盖茨黑德和您的承诺。