准确确定电池状况是操作中的关键挑战。随着锂离子电池的性能随着时间的推移而降级,对健康状况的准确预测将提高整体效率和安全性。本文根据高斯过程回归提出了一种预测方法,并在单个模型中使用自动相关性确定内核,用于三种不同类型的电池电池。降低了问题的维度和对特征的灵敏度分析后,对模型进行了训练,验证并在看不见的数据上进行了进一步测试。最小测试误差的平均绝对误差为1.33%。结合了预测结果的低不确定性,这表明了使用数据驱动方法预测电池状况的适用性和巨大潜力。
摘要 - 行驶系统是自动驾驶汽车的必要系统,许多论文提出了轨迹跟踪和避免障碍物的技术。高斯潜在功能对于使用2D激光雷达避免障碍物的轨迹跟踪控制系统众所周知。缺点是它依赖于局部最小值,在某些情况下,车辆和目标正在朝着相同的方向移动,由于有吸引力的潜在领域的诱惑太高,因此车辆和目标正在朝着相同的方向移动。然后,已经引入了使用修改后的有吸引力功能避免障碍物的轨迹跟踪控制,该功能的常规吸引力功能被修改以改善导航系统。模拟是通过Carla模拟器进行的,并且使用修改功能的避免障碍物的运动在跟踪过程中的摇摆运动和横向运动过程中的安全性考虑,这是通过车辆的横向加速度来考虑的,其在模拟情况下的值比其他类型的有吸引力的功能少。同时,修改后的功能还保持了车辆和障碍物之间的安全距离差距,以免避免在障碍物范围内避免在非常接近的范围内,这可能会导致碰撞。关键字 - 三射跟踪控制系统,避免障碍物,高斯潜在功能,有吸引力的功能,Carla Simulator
有效控制线性高斯量子 (LGQ) 系统是基础量子理论研究和现代量子技术发展中的重要任务。在此,我们提出了一种基于梯度下降算法的通用量子学习控制方法,用于最佳控制 LGQ 系统。我们的方法利用完全描述 LGQ 系统量子态的一阶和二阶矩,灵活地设计用于不同任务的损失函数。我们使用这种方法展示了深度光机械冷却和大型光机械纠缠。我们的方法能够在短时间内对机械谐振器进行快速和深度基态冷却,超越了连续波驱动强耦合机制中边带冷却的限制。此外,即使热声子占有率达到一百,光机械纠缠也可以非常快地产生,并且超过相应稳态纠缠的几倍。这项工作不仅拓宽了量子学习控制的应用范围,而且为 LGQ 系统的最优控制开辟了一条途径。
编辑场景图像在各个领域都非常重要,从娱乐,专业摄影和广告设计开始。内容编辑可以为观众创造沉浸式和迷人的体验,有效地传达艺术愿景并实现所需的美学结果。随着深层生成建模的快速发展,已经进行了许多尝试有效地编辑图像的尝试。但是,他们遇到了阻碍潜力的局限性。以前的方法主要集中在2D图像空间中的场景编辑上。他们通常依靠生成先验,例如gan和扩散模型(DM),并采用了诸如修改跨注意机制的技术[Hertz等。2022,2023],以及网络参数的优化[Chen等。2023a; Gal等。2022; Kawar等。2023; Kim等。2022; Ruiz等。2023]在场景图像中编辑外观和对象身份。尽管已做出一些努力将这些方法扩展到3D编辑,但它们忽略了3D提示,并在保持3D一致性方面构成了挑战,尤其是在更改摄像头姿势时。此外,这些方法通常集中在全球场景上,并且缺乏准确地解开对象的能力,从而导致对3D级别对单个对象的控制有限。为了编辑任何场景图像并启用对场景及其单个对象的3D控制,我们提出了3DITSCENE,这是一个新颖的场景编辑框架,该框架利用了新的场景表示形式,语言指导的散布高斯散布。2022; Rombach等。具体而言,给定的图像首先投影到3D高斯人中,这些高斯人通过2D生成的先验进一步完善并富集[Poole等。2022]。因此,我们获得了一个综合的3D场景表示,该表示自然可以为给定图像提供新的视图综合。此外,剪辑中的语言特征被蒸馏到相应的3D高斯人中,将语义引入3D几何形状。这些语义3D高斯人有助于将单个对象从整个场景表示中删除,从而导致语言引导的散布的高斯人进行场景分解。他们还允许更具用户友好的交互作用,即用户可以通过文本查询特定的对象或兴趣。为此,我们的3DITSCENE可实现从2D到3D的无缝编辑,并允许在全球和个人层面上进行修改,使创建者能够精确控制场景组合和对象级的编辑。我们将管道称为3DITSCENE。与以前的工作不同,该作品着重于解决单一类型的编辑,3DITSCENE INTETE-GRETS编辑要求在统一框架内。我们的预告片数字通过展示其在不同场景图像中的应用来演示3DITSCENE的多功能性。我们在各种环境下对3DITSCENE进行了评估,结果证明了基线方法的显着改善。
摘要 - 在3D中了解我们世界的动态对于机器人应用的性能和稳健性至关重要。尽管最近的进度已与视觉模型和体积渲染结合起来提供语义3D表示形式,但大型模型的推理时间既不是实时机器人操作的所需更新速度。在这项工作中,我们建议将“对象”注入基于3D高斯人的语义表示[1]。具有相同语义标签的高斯人可以一起初始化和更新,从而导致快速更新,以响应机器人和对象运动。所有必要的语义信息都是从验证的基础模型的第一步中提取的,从而规避了大型模型的推理瓶颈,但仍获取语义信息。只有三个相机视图,我们提出的表示形式可以实时捕获30 Hz的动态场景,这对于大多数操纵任务就足够了。通过基于我们的对象感知的高斯分裂来利用表示形式,我们能够求解语言条件的动态握把,为此,机器人抓取了开放词汇查询指定的动态移动对象。我们还使用该表示形式通过行为克隆来训练视觉运动策略,并表明该策略通过预审计的编码者获得了基于图像的策略的可比结果。视频https://object-aware-gaussian.github.io
当结构冲击是独立的并遵循非高斯分歧时,结构向量自回旋(SVAR)模型中的所有参数都是局部识别的。不幸的是,当识别数据的此类特征的标准推理方法无法在模型参数的结构函数的范围内获得正确的覆盖范围。对此词,我们提出了一种局部可靠的半参数方法,以进行假设检验并为SVAR模型中的结构功能构建信心集。该方法在存在时完全利用非高斯性,但可以使局部至高斯密度正确的大小/覆盖率。从经验上讲,我们重新访问了两项宏观conomic SVAR研究,在该研究中,我们记录了混合的结果。对于Kilian和Murphy的石油价格模型(2012),我们发现非高斯性可以坚定地识别合理的承认集,而对于Baumeister和Hamilton(2015)的劳动力供应 - 按需模型(2015)并非如此。此外,这些练习强调了使用弱识别稳健方法来评估估计不确定性的重要性,当时使用非高斯性进行识别。
虽然新颖的视图合成(NVS)在3D计算机视觉中取得了进步,但通常需要从密集的视点对摄像机内在和外部设备进行初始估计。这种预处理通常是通过结构 - 运动(SFM)管道来进行的,这是一种可以缓慢且不可靠的操作,尤其是在稀疏视图方案中,匹配的功能不足,无法进行准确的重建。In this work, we integrate the strengths of point-based representations (e.g., 3D Gaus- sian Splatting, 3D-GS) with end-to-end dense stereo mod- els (DUSt3R) to tackle the complex yet unresolved is- sues in NVS under unconstrained settings, which encom- passes pose-free and sparse view challenges.我们的框架工作,InstantsPlat,用3D-GS统一了密集的立体声先验,以构建稀疏场景的3D高斯大型场景 -
摘要:越来越多的光学卫星任务对陆地地球系统的连续监测为植被和农田特征提供了宝贵的见解。卫星任务通常提供不同级别的数据,例如1级大气顶(TOA)辐射率和2级大气底(BOA)反射率产品。开发TOA辐射数据直接提供了绕过复杂大气校正步骤的优势,在该步骤中,错误可以在其中进行预测并损害随后的检索过程。因此,我们研究的目的是开发能够从成像光谱卫星任务中直接从TOA辐射数据中检索植被特征的模型。为了实现这一目标,我们基于辐射转移模型(RTM)模拟数据构建了混合模型,从而采用了植被范围RTM与大气libradtran RTM结合使用高斯工艺回归(GPR)。重点是植被冠层特征的重新评估,包括叶子面积指数(LAI),冠层叶绿素含量(CCC),冠层水含量(CWC),吸收的光合式活性辐射(FAPAR)的分数以及植被覆盖的分数(FVC)。使用即将到来的哥白尼高光成像任务(Chime)的带设置,评估了两种类型的混合GPR模型:(1)使用TOA辐射数据在1级(L1)培训的一种培训,并且(2)使用BOA反射率数据在2级(L2)训练。基于TOA和BOA的GPR模型均已针对原位数据验证,并具有从现场活动中获得的相应高光谱数据。基于TOA的混合GPR模型揭示了从中度到最佳结果的一系列性能,因此达到R 2 = 0.92(LAI),R 2 = 0.72(CCC)和0.68(CCC)和0.68(CWC),R 2 = 0.94(FAPAR)和R 2 = 0.95(FVC)。为了证明模型的适用性,随后将基于TOA和BOA的GPR模型应用于科学前体任务Prisma和Enmap的图像。所产生的性状图在基于TOA和BOA的模型之间显示出足够的一致性,相对误差在4%至16%之间(R 2在0.68和0.97之间)。总的来说,这些发现阐明了机器学习混合模型的开发和增强的路径,以估算直接在TOA水平下定制的植被特征。
要控制机器人如何移动,运动计划必须在高维状态空间中计算路径,同时考虑与电动机和关节相关的物理约束,产生平稳稳定的运动,避免障碍物,并防止碰撞。因此,运动计划算法必须平衡竞争需求,并且应非常融合不确定性,以处理噪声,模型错误并促进在复杂环境中的部署。为了解决这些问题,我们基于变异的gaus-sian流程为机器人运动计划介绍了一个框架,该过程统一并概括了基于概率的各种基于概率的运动计划算法,并将它们与基于优化的计划者联系起来。我们的框架提供了一种原则性和灵活的方式,用于基于不平等的基于不平等的不平等和软运动规划的约束,在末端训练期间是直接的,并提供基于间隔和基于蒙特卡洛的不确定性估计值。我们使用不同的环境和机器人进行实验,并根据计划的路径的可行性和障碍避免质量进行比较。结果表明,我们提出的方法在成功率和路径质量之间取得了良好的平衡。
purcell增强量子点(QD)单光子发射和设备亮度的增加,已经证明了各种类型的微腔。在这里,我们提出了第一个实现截断的高斯形状的微腔与QD的截断。实施基于湿化学蚀刻和外延半导体过度生长。实验研究了腔模式及其空间纤维,并与模拟很好地吻合。可以通过制造设计可重复控制具有6000张Q-因子的基本模式波长,而29 L EV的小极化分裂可以重复控制,从而使腔体适应了特定的QD。最后,通过温度调节对腔内QD的过渡进行调节和关闭共振。在共振上减少了一个以上的因子减少的衰减时间清楚地表明purcell的增强,而G(2)(0)¼0.057的二阶相关测量结果证明了QDS单光子特性得以保留。