有几种不同类型的控制方法可用于线性和非线性系统。这些控制方法需要简单到复杂的控制器。在本项目中,通过获取状态空间模型并检查不同控制方法的开环和闭环响应来分析无尾翼火箭的俯仰稳定性。此外,根据线性二次调节器 (LQR) 的响应评估了简单但强大的比例、积分、微分 (PID) 控制器的响应。由于实际应用和案例的局限性,开发了卡尔曼滤波器 (最佳估计器) 来充分观察和获取必要的状态变量。最终,将 LQG 和卡尔曼滤波器结果和增益结合起来以获得线性二次高斯 (LQG) 控制器响应。每个部分都将定义、推导和实现必要的函数到 MATLAB 和 Simulink 中以获得最佳响应。
从测量开始时关于测量系统的量子状态的连续测量记录可以获得哪些知识?量子状态改编的任务是更为常见的状态预测的倒数,在量子测量理论中通过回顾性积极算法值(POVM)严格解决。此通用框架的介绍介绍了其使用连续的同伴测量值回顾高斯量子状态的实用配方,并将其应用于光学机械系统。我们在常见的光学机械操作模式中识别并表征具有共振或异位驱动场以及同源振荡器局部振荡器频率的特定选择。,我们证明了对机械振荡器正交的近考虑测量的可能性,从而直接访问给定时间的振荡器的位置或动量分布。这构成了完全量子状态层析成像的基础,尽管以破坏性的方式。
张量高斯图模型 (GGM) 可以解释张量数据中的条件独立结构,在许多领域都有重要应用。然而,由于获取成本高,单个研究中可用的张量数据往往有限。虽然相关研究可以提供额外的数据,但如何汇集这些异构数据仍是一个悬而未决的问题。在本文中,我们提出了一个张量 GGM 的迁移学习框架,该框架充分利用了信息辅助域,即使存在非信息辅助域,也能从精心设计的数据自适应权重中受益。我们的理论分析表明,通过利用辅助域的信息,在非常宽松的条件下,目标域上的估计误差和变量选择一致性得到了显着改善。在合成张量图和大脑功能连接网络数据上进行了广泛的数值实验,证明了所提出方法的令人满意的性能。关键词:大脑功能连接、高斯图模型、精度矩阵、张量数据、迁移学习。
从大型2D图像收集中学习3D头先验是迈向高质量3D感知人类建模的重要一步。核心需求是一种有效的体系结构,可以很好地扩展到大型数据集和大型图像分辨率。不幸的是,现有的3D GAN由于火车相对较慢和渲染速度而难以扩展以高分辨率生成样品,并且通常必须依靠2D超分辨率网络以牺牲全球3D一致性为代价。为了应对这些挑战,我们提出了发电性高斯头(GGHEAD),该挑战在3D GAN框架内采用了最近的3D高斯剥落表示。为了生成3D表示,我们采用强大的2D CNN发电机来预测模板头网格的UV空间中的高斯属性。以这种方式,GGHEAD利用了模板的UV布局的规律性,从而实质上促进了预测非结构化的3D高斯人的挑战性任务。我们进一步提高了生成的3D表示的几何保真度,并在渲染的紫外线坐标上发生了新的总变化损失。直觉,这种正则化鼓励相邻的渲染像素应源于模板的紫外线空间中的邻近高斯人。总的来说,我们的管道可以有效地生成仅从单视2D图像观测值训练的3D头。我们的拟议框架与FFHQ上现有的3D头gan的质量相匹配,同时既快速又完全3D。结果,我们首次以1024 2分辨率证明了高质量3D一致的头的实时生成和渲染。项目网站:https://tobias-kirschstein.github.io/gghead
由于Feynman [1]和Lloyd [2]的第一个开创性作品,量子计算被认为是探索与经典计算工具相关的强大相关多体系统的量子动力学的可能途径。哈密顿模拟算法的最新进展[3-6]允许对像计算不平衡外的dynamics [7]一样多样化的计算成本,独特的散射跨点[8,9]和基态能量估计[10]。大多数提出的算法仍然需要许多门太大,无法在NISQ设备上进行应用[11],并且需要更多的工作才能降低这些成本(例如,请参阅Eg。[9]最近分析了中微子核散射的要求)。在Somma [12]的最新工作中,我们在这项工作中提出了一种新的量子算法,具有几乎最佳的计算成本(就甲骨文调用而言),以研究光谱密度估计问题。尤其是给定栖息地操作员ˆ O,这项工作的目的是获得有效的算法,以近似频谱密度操作员ˆρ(ω)=δ(ω -− ˆ o),并使用DIRAC DIRAC DELTA函数。使用操作员的特征态ˆ o我们具有以下频谱表示
通用连续变量量子计算所需的操作集可分为两个主要类别:高斯操作和非高斯操作。此外,任何高斯操作都可以分解为相空间位移和辛变换序列。尽管高斯操作在量子光学中无处不在,但它们的实验实现通常是理想高斯幺正的近似值。在这项工作中,我们研究了不同的性能标准,以分析这些实验近似值模拟理想高斯幺正的程度。特别是,我们发现这些实验近似值都没有均匀收敛到理想高斯幺正。但是,收敛发生在强意义上,或者如果判别策略是能量有界的,那么在 Shirokov-Winter 能量约束钻石范数中收敛是均匀的,我们在后一种情况下给出了明确的界限。我们指出了如何使用这些能量约束边界来对这些高斯幺正进行实验以实现任何所需的精度。
摘要:越来越多的光学卫星任务对陆地地球系统的连续监测为植被和农田特征提供了宝贵的见解。卫星任务通常提供不同级别的数据,例如1级大气顶(TOA)辐射率和2级大气底(BOA)反射率产品。开发TOA辐射数据直接提供了绕过复杂大气校正步骤的优势,在该步骤中,错误可以在其中进行预测并损害随后的检索过程。因此,我们研究的目的是开发能够从成像光谱卫星任务中直接从TOA辐射数据中检索植被特征的模型。为了实现这一目标,我们基于辐射转移模型(RTM)模拟数据构建了混合模型,从而采用了植被范围RTM与大气libradtran RTM结合使用高斯工艺回归(GPR)。重点是植被冠层特征的重新评估,包括叶子面积指数(LAI),冠层叶绿素含量(CCC),冠层水含量(CWC),吸收的光合式活性辐射(FAPAR)的分数以及植被覆盖的分数(FVC)。使用即将到来的哥白尼高光成像任务(Chime)的带设置,评估了两种类型的混合GPR模型:(1)使用TOA辐射数据在1级(L1)培训的一种培训,并且(2)使用BOA反射率数据在2级(L2)训练。基于TOA和BOA的GPR模型均已针对原位数据验证,并具有从现场活动中获得的相应高光谱数据。基于TOA的混合GPR模型揭示了从中度到最佳结果的一系列性能,因此达到R 2 = 0.92(LAI),R 2 = 0.72(CCC)和0.68(CCC)和0.68(CWC),R 2 = 0.94(FAPAR)和R 2 = 0.95(FVC)。为了证明模型的适用性,随后将基于TOA和BOA的GPR模型应用于科学前体任务Prisma和Enmap的图像。所产生的性状图在基于TOA和BOA的模型之间显示出足够的一致性,相对误差在4%至16%之间(R 2在0.68和0.97之间)。总的来说,这些发现阐明了机器学习混合模型的开发和增强的路径,以估算直接在TOA水平下定制的植被特征。
如今,数据的空前可用性和计算硬件的进步已推动机器学习 (ML) 和深度学习 (DL) 领域取得重大进展。[1] 通过利用大量开放获取数据,ML 技术可实现自动化决策,适用于医疗预测 [2]、财务预测 [3]、工业故障管理 [1] 等广泛应用。ML 技术在生产中的部署涉及数据收集和计算要求高的算法推理过程。在大多数情况下,此过程发生在昂贵的硬件系统中,例如数据中心。上述许多 ML 应用都需要实时计算,这就需要在数据采集系统和数据中心之间进行不切实际的数据传输。解决这个问题的方法是边缘计算,将采集和计算系统集成在同一设备中,从而消除了通信开销 [4]。这催生了智能工业的一个新领域,物联网 (IoT) 应用可从使用 ML 模型中获益 [5]。物联网系统的一个重要方面是功耗 [6];设备必须依靠电池自主执行高计算任务。这反过来又导致对前所未有的低功耗和低面积利用率的需求。因此,在过去的几十年里,出现了一种新趋势,即在物联网和 ML 应用中使用低面积和低功耗硬件加速器,直接连接到智能传感器或系统 [7]。
摘要。在基于完全正量子动力学半群的开放系统理论框架内,我们描述了双模高斯态高斯干涉功率的马尔可夫动力学,该系统由两个玻色子模式组成,每个模式与其压缩热库相互作用。干涉功率的时间演化用高斯初始状态的协方差矩阵来描述。高斯干涉功率的行为取决于子系统的初始状态(压缩参数和热光子数)以及表征压缩热库的参数(温度、耗散系数、库的压缩参数和压缩角)。我们表明,与初始状态无关,高斯干涉功率随时间单调递减,在时间极限下渐近递减为零值。
摘要。在非结构化环境中执行语言条件的机器人操纵任务对于一般的智能机器人高度要求。常规的机器人操纵方法通常会学习对动作预测观察的单一表示,这忽略了人类目标组成的场景级时空动力学。在本文中,我们提出了一种动态的高斯分裂方法,名为Manigaussian多任务机器人操纵,该方法通过未来场景重建进行了场景动态。具体而言,我们首先要介绍动态的高斯脱落框架,该框架渗透了高斯嵌入空间中的半义传播,其中利用语义表示来预测最佳的机器人动作。然后,我们构建了一个高斯世界模型,以参数化我们动态的高斯脱落框架中的分布,该框架通过未来的场景重建在交互式环境中提供了信息性的范围。我们通过166个变体评估了10个RLBench任务的Manigussian,结果表明我们的框架可以比最先进的方法胜过13。平均成功率1%。