本文基于与归一化采样的高斯核或综合高斯内核的卷积,对高斯衍生物的两种混合离散方法的性质进行了分析。研究这些离散方法的动机是,在相同规模水平上需要多个阶的多个空间衍生物时,与基于更直接的衍生近似值相比,它们基于基于更直接的衍生近似值而具有更高的效率相比,它们基于具有较高的衍生性速率,以示例性衍生性衍生性不能衍生性不能进行。我们根据定量绩效指标来表征这些混合离散方法的特性,同意它们所暗示的空间平滑量,以及它们从量表 - 流动特征探测器的相对一致性以及从自动量表选择中获得的量表的相对一致性,从尺度上的量表与尺度相关的量度相差很大,该尺度的范围与尺度的相差相差,该尺度的尺度是有效的。理论以及不同类型的离散方法之间。在设计和解释以非常精细的水平运行的规模空间算法的实验结果时,提出的结果旨在作为指导。
神经数据集通常包含在重复刺激或行为的多个试验中测量神经活动的测量。对此类数据集的分析中的一个重要问题是表征神经活动的系统方面,这些方面携带有关重复刺激或感兴趣的行为的信息,这些刺激或行为可以视为“信号”,并将它们与在活动到试验中的频率分开,而这些活动的刺激时间却不是时间到刺激,而这些分析可以被视为“噪声”。高斯过程因子模型为识别高维神经数据中的共享结构提供了强大的工具。但是,它们尚未适应多试验数据集中信号和噪声的问题。在这里,我们通过提出“信号 - 噪声”泊松泊式高斯过程因子分析(SNP-GPFA)来解决这一缺点,这是一种可浮动的潜在可变模型,可在神经种群尖峰活动中解析信号和噪声潜在结构。为了了解模型的参数,我们引入了一个傅立叶黑框变分推理方法,该方法迅速识别平滑的潜在结构。最终的模型可靠地发现了大规模记录中的潜在信号和试验到试验噪声相关的闪光。我们使用此模型表明,在猴子V1中,噪声闪烁在子空间正交中对信号活动的扰动神经活动,这表明逐审噪声不会干扰信号表示。最后,我们扩展了模型以捕获多区域数据中大脑区域的统计依赖性。我们表明,在鼠标Visual Cortex中,在大脑区域之间具有共享噪声的模型超过具有独立每个区域噪声的模型。
摘要本文介绍了GSCORE,这是一个硬件加速器单元,该单元有效地执行了使用算法优化的3D Gauss-ian剥落的渲染管道。GSCORE基于对基于高斯的辐射场渲染的深入分析的观察,以提高计算效率并将技术带入广泛采用。在此过程中,我们提出了几种优化技术,高斯形状感知的交叉测试,分层排序和下图跳过,所有这些都与GSCORE协同集成。我们实施了GSCORE的硬件设计,使用商业28NM技术进行合成,并评估具有不同图像分辨率的一系列合成和现实世界场景的性能。我们的评估要求表明,GSCORE在移动消费者GPU上实现了15.86倍的速度,其面积较小,能源消耗较低。
有效控制线性高斯量子 (LGQ) 系统是基础量子理论研究和现代量子技术发展中的重要任务。在此,我们提出了一种基于梯度下降算法的通用量子学习控制方法,用于最佳控制 LGQ 系统。我们的方法利用完全描述 LGQ 系统量子态的一阶和二阶矩,灵活地设计用于不同任务的损失函数。我们使用这种方法展示了深度光机械冷却和大型光机械纠缠。我们的方法能够在短时间内对机械谐振器进行快速和深度基态冷却,超越了连续波驱动强耦合机制中边带冷却的限制。此外,即使热声子占有率达到一百,光机械纠缠也可以非常快地产生,并且超过相应稳态纠缠的几倍。这项工作不仅拓宽了量子学习控制的应用范围,而且为 LGQ 系统的最优控制开辟了一条途径。
I.引言Flyrock是爆炸启动时远离采矿区的岩石质量。通常考虑的第一个参数是:负担,爆炸孔直径,深度,粉末因子间距,茎,爆炸性材料类型和sub-drill在Flyrock预测期间是可控参数。此外,爆炸工程师无法影响的岩石性能是无法控制的参数,例如压缩间距和岩石的拉伸强度。因此,爆炸工程师必须更改第一个参数,以最大程度地减少flyrock掷距离。设计了各种经验方程,以设想由爆破操作[1],[2]产生的fly架。经验模型是根据flyrock上的几个现场实验的有效参数开发的,即孔直径,爆炸性,茎,负担的密度,弹出材料,粉末因子和孔长度的初始发射速度。因此,这些经验方程的性能预测能力在许多情况下不是很有效[2],[3]。
高斯流程(GPS)[1]是机器学习中的一种多功能工具,但对它们的构成诸如阳性,单调性或物理约束之类的约束是具有挑战性的[2]。过去的作品已考虑将GPS作为差异方程的解决方案[3],时间和光谱重建问题[4],或通过线性操作员注入域特异性约束[5]。其他作品与非线性函数相结合的GP输出[6,7],通过约束边际可能性[8]或铸造线性约束作为截短的多变量高斯分布的条件期望,将输出结合到正值[9]。在这项工作中,我们旨在发现一个积极价值的天文光谱的潜在空间。在过去的降低谱图[10,11,12]的作品中,[13]独特地纳入了非阴性约束。,我们通过将其外部限制到正值来扩展高斯过程潜在变量模型(GPLVM)[14]。天文光谱的幅度不是本质的物理特性,不应在潜在空间中反映。我们引入了规模不变,并表明它会导致更好的重建。
摘要 - 可推广的感知是太空机器人技术中高级自治的支柱之一。估计动态环境中未知对象的结构和运动对于此类自主系统至关重要。传统上,解决方案依赖于目标对象的先验知识,多个不同的表示或不适合机器人操作的低保真输出。这项工作提出了一种新颖的方法,可以使用统一表示形式来逐步重建和跟踪动态未知对象 - 一组3D高斯斑点,描述了其几何形状和外观。可区分的3DGS框架适合以动态对象设置。管道的输入是一组顺序的RGB-D图像。3D重建和6-DOF姿势跟踪任务是使用基于一阶梯度的优化来解决的。该公式很简单,不需要预训练,不假定对对象或其运动的先验知识,并且适合在线应用程序。在任意相对运动下的10个未知航天器的数据集中验证了所提出的方法。实验表明,在短期到中持续时间内,目标对象的成功3D重建和准确的6-DOF跟踪。讨论了跟踪漂移的原因,并概述了潜在的解决方案。
识别基于间接观察到的过程的功能网络构成了神经科学或其他领域的反问题。对此类反问题的解决方案估算为第一步,该活动从脑电图或MEG数据中从功能网络中出现。这些脑电图或MEG估计是对功能性脑网络活动的直接反映,其时间分辨率是其他体内神经图像无法提供的。第二步估计了此类活动pseudodata的功能连通性,揭示了与所有认知和行为密切相关的振荡性脑网络。对此类MEG或EEG逆问题的模拟还揭示了由任何最新的反溶液确定的功能连接性的估计误差。我们揭示了估计误差的重要原因,该原因源自将任一个逆解决方案步骤的功能网络模型的错误指定。我们介绍了指定这种振荡性脑网络模型的隐藏高斯图形光谱(HIGGS)模型的贝叶斯识别。在人EEGα节律模拟中,以ROC性能为单位测得的估计错误在我们的HIGG逆溶液中不会超过2%,而最先进的方法中的估计误差则达到20%。猕猴同时发生的EEG/ECOG记录为我们的结果提供了实验性确认,根据Riemannian距离,其一致性比最新的方法高的1/3倍。
摘要 - 行驶系统是自动驾驶汽车的必要系统,许多论文提出了轨迹跟踪和避免障碍物的技术。高斯潜在功能对于使用2D激光雷达避免障碍物的轨迹跟踪控制系统众所周知。缺点是它依赖于局部最小值,在某些情况下,车辆和目标正在朝着相同的方向移动,由于有吸引力的潜在领域的诱惑太高,因此车辆和目标正在朝着相同的方向移动。然后,已经引入了使用修改后的有吸引力功能避免障碍物的轨迹跟踪控制,该功能的常规吸引力功能被修改以改善导航系统。模拟是通过Carla模拟器进行的,并且使用修改功能的避免障碍物的运动在跟踪过程中的摇摆运动和横向运动过程中的安全性考虑,这是通过车辆的横向加速度来考虑的,其在模拟情况下的值比其他类型的有吸引力的功能少。同时,修改后的功能还保持了车辆和障碍物之间的安全距离差距,以免避免在障碍物范围内避免在非常接近的范围内,这可能会导致碰撞。关键字 - 三射跟踪控制系统,避免障碍物,高斯潜在功能,有吸引力的功能,Carla Simulator