1979 年 12 月 3 日,移动通信使用蜂窝系统开始了第一代移动通信。此后,移动通信的无线接入技术每 10 年就会演变成新一代系统。随着技术的发展,服务也在不断进步。从第一代 (1G) 到第二代 (2G),服务主要是语音通话,但最终发展到简单的短信。第三代 (3G) 技术使任何人都可以使用以“i-mode”为代表的数据通信服务,发送图片、音乐和视频等多媒体信息。在第四代 (4G) 中,通过 LTE (长期演进) 技术实现了超过 100 Mbps 的高数据速率通信,导致智能手机的普及和各种多媒体通信服务的出现。4G 技术以 LTE-Advanced 的形式不断发展,现在已实现超过 1 Gbps 的最大数据速率。进一步的技术进步使第五代 (5G) 成为现实。 DOCOMO于2020年3月25日利用其5G移动通信系统[1-1]推出5G商用服务。
摘要 — 光学互连是片上通信中铜基布线的有前途的替代品。集成 IV 族纳米光子学的最新进展应该能够解决与速度、能耗和成本相关的一系列挑战。单片集成锗 pin 光电探测器位于绝缘体上硅 (SOI) 波导上,是这一蓬勃发展的研究领域中不可或缺的设备。在这里,我们全面研究了异质结构 pin 光电探测器的光电特性。所有光电探测器均采用工业级半导体制造工艺在 200 毫米 SOI 基板上制造。在 1 V 的低偏置电压下,pin 光电探测器的暗电流为 5 nA 至 100 nA,暗电流密度为 0.404 A/cm 2 至 0.808 A/cm 2,响应度在 0.17 A/W 至 1.16 A/W 范围内,截止频率为 7 GHz 至 35 GHz。这些成就使它们有望用于以 40 Gbps 运行的节能光链路,器件能量耗散仅为每位几 fJ。
1 英特尔公司可编程解决方案事业部 2 多伦多大学和矢量研究所 3 卡内基梅隆大学 { andrew.boutros, eriko.nurvitadhi } @intel.com 摘要 — 人工智能 (AI) 的重要性和计算需求日益增长,导致了领域优化硬件平台的出现。例如,Nvidia GPU 引入了专门用于矩阵运算的张量核心,以加速深度学习 (DL) 计算,从而使 T4 GPU 的峰值吞吐量高达 130 int8 TOPS。最近,英特尔推出了其首款针对 AI 优化的 14nm FPGA Stratix 10 NX,其内置 AI 张量模块可提供高达 143 int8 TOPS 的估计峰值性能,堪比 12nm GPU。然而,实践中重要的不是峰值性能,而是目标工作负载上实际可实现的性能。这主要取决于张量单元的利用率,以及向/从加速器发送数据的系统级开销。本文首次对英特尔的 AI 优化 FPGA Stratix 10 NX 进行了性能评估,并与最新的 AI 优化 GPU Nvidia T4 和 V100 进行了比较,这些 GPU 都运行了大量的实时 DL 推理工作负载。我们增强了 Brainwave NPU 覆盖架构的重新实现,以利用 FPGA 的 AI 张量块,并开发了工具链支持,使用户能够仅通过软件对张量块进行编程,而无需在循环中使用 FPGA EDA 工具。我们首先将 Stratix 10 NX NPU 与没有张量块的 Stratix 10 GX/MX 版本进行比较,然后对 T4 和 V100 GPU 进行了详细的核心计算和系统级性能比较。我们表明,我们在 Stratix 10 NX 上增强的 NPU 实现了比 GPU 更好的张量块利用率,在批处理 6 时,与 T4 和 V100 GPU 相比,平均计算速度分别提高了 24 倍和 12 倍。即使在允许批处理大小为 32 的宽松延迟约束下,我们仍分别实现了与 T4 和 V100 GPU 相比 5 倍和 2 倍的平均速度提升。在系统级别,FPGA 的细粒度灵活性及其集成的 100 Gbps 以太网允许以比通过 128 Gbps PCIe 本地访问 V100 GPU 少 10 倍和 2 倍的系统开销延迟进行远程访问,分别用于短序列和长序列 RNN。索引术语 — FPGA、GPU、深度学习、神经网络
根据目前多个联邦和州计划(如 NTIA 宽带公平、接入和部署计划以及多个 USF 计划)中使用的标准、消费者使用模式以及 ISP 实际提供和销售的产品,将委员会高级电信能力的固定速度基准提高到 100/20 Mbps。自 2015 年以来,委员会的固定速度基准一直设定为 25/3 Mbps。 得出结论,委员会根据第 706 条确定的成功标准是普遍可用性,并且为了以“合理和及时的方式”进行部署,必须以快速的方式进行,以免大量美国人无法使用宽带。 检查委员会的《普遍服务基金未来报告》中采用的普遍服务目标:全美范围内的普遍部署、可负担性、采用、可用性和公平访问宽带。 首次使用委员会的宽带数据收集部署数据,该数据显示,截至 2022 年 12 月,大约 7% 的美国人、近 28% 的农村地区美国人和超过 23% 的部落土地居民尚未实际部署固定地面宽带服务(不包括卫星)。 虽然没有为移动宽带服务设定速度基准,但报告称,截至 2022 年底,大约 9% 的美国人、近 36% 的农村地区美国人和超过 20% 的部落土地居民尚未以最低 35/3 Mbps 的速度实际部署移动 5G-NR 覆盖范围。 确定美国人要想使用先进的电信能力,就必须同时使用固定和移动先进的电信能力,并报告称 9% 的美国人、近 36% 的农村地区美国人和超过 20% 的部落土地上居民无法使用 100/20 Mbps 固定速度基准和以最低速度 35/3 Mbps 部署的移动 5G-NR 的先进电信能力。 采用 1 Gbps/500 Mbps 的长期速度目标,为利益相关者提供一个共同奋斗的目标 — — 为美国消费者提供更好、更快、更强大的通信系统。 将学校和教室的短期基准提高到每 1,000 名学生和教职员工 1 Gbps,并报告称 74% 的学区达到了这一新的短期目标。 提供有关可负担性、采用性、可用性和公平访问的普遍服务目标的可用数据。 根据缺乏此类能力的美国人总数、农村地区的美国人以及部落土地上居民的数量,得出结论:先进的通信能力没有得到合理和及时的部署。
AI 人工智能 CDMA2000 1x EV-DO 码分多址(演进数据优化) CDMA 1xRTT 码分多址(单载波无线传输技术) Datatilsynet 挪威数据保护局 Digdir 挪威数字化机构 ICT 信息和通信技术 EDGE 全球演进增强数据 FDI 外国直接投资 Finanstilsynet 挪威金融监管局 Framework OECD 数字化综合政策框架 Gbps 千兆比特每秒 GDPR 通用数据保护条例 GDP 国内生产总值 GHz 千兆赫 GPRS 通用分组无线业务 HSPA 高速分组接入 IoT 物联网 Kbps 千比特每秒 LTE 长期演进 Mbps 兆比特每秒 NDS 国家数字战略 NDSC 国家数字战略全面性指标 Nkom 挪威通信管理局 R&D 研究与开发 SME 中小企业 STEM 科学、技术、工程和数学 VC 风险投资 WCDMA 宽带码分多址 WiMAX IEEE 802.16e 微波接入全球互操作性
1979 年 12 月 3 日,日本电信电话公司 (NTT) 推出了世界上第一个使用蜂窝系统的移动通信服务。此后,移动通信的无线接入技术每 10 年就会演变成新一代系统。随着技术的发展,服务也取得了进步。从第一代 (1G) 到第二代 (2G),服务主要是语音通话,但最终发展为简单的文本消息。第三代 (3G) 技术使任何人都可以使用以“i-mode”为代表的数据通信服务,并发送图片、音乐和视频等多媒体信息。在第四代 (4G) 中,LTE(长期演进)技术实现了超过 100 Mbps 的高数据速率通信,导致智能手机的普及和各种多媒体通信服务的出现。4G 技术以 LTE-Advanced 的形式不断发展,现在已实现超过 1 Gbps 的最大数据速率。进一步的技术进步使第五代 (5G) 成为现实。 DOCOMO于2020年3月25日利用其5G移动通信系统[1-1]推出5G商用服务。
增强移动宽带 (eMBB):峰值数据速率将达到数十 Gbps。重要的是,eMBB 还具有三个不同的属性:1) 更高容量 - 可在人口密集的室内/室外区域使用;2) 增强连接性 - 可在任何地方使用;3) 更高用户移动性 - 可在从汽车到飞机的移动交通工具中使用。典型的物联网用例包括需要更高容量和更低延迟的视频和数据流设备,以及基于 AR/VR 的数字孪生的工业应用。 海量机器类型通信 (mMTC):它支持海量网络容量,可以可靠地连接数千个物联网端点和边缘设备,而不会出现拥塞问题。典型的端点是低成本、电池供电的设备,它们定期通过 mMTC 物联网网关将少量存储数据传输到核心或其他本地设备。 超可靠和低延迟通信 (URLLC):它为自动驾驶、工业自动化无线控制和机器人手术等关键任务应用提供低延迟和高可靠性。
1979 年 12 月 3 日,日本电信电话公司 (NTT) 推出了世界上第一个使用蜂窝系统的移动通信服务。此后,移动通信的无线接入技术每 10 年就会演变成新一代系统。随着技术的发展,服务也取得了进步。从第一代 (1G) 到第二代 (2G),服务主要是语音通话,但最终发展为简单的文本消息。第三代 (3G) 技术使任何人都可以使用以“i-mode”为代表的数据通信服务,并发送图片、音乐和视频等多媒体信息。在第四代 (4G) 中,LTE(长期演进)技术实现了超过 100 Mbps 的高数据速率通信,导致智能手机的普及和各种多媒体通信服务的出现。4G 技术以 LTE-Advanced 的形式不断发展,现在已实现超过 1 Gbps 的最大数据速率。进一步的技术进步使第五代 (5G) 成为现实。 DOCOMO于2020年3月25日利用其5G移动通信系统[1-1]推出5G商用服务。
摘要 - 解码算法允许以增加面积的成本实现极高的吞吐量。查找表(LUTS)可用于替换其他作为电路实现的功能。在这项工作中,我们显示了通过在独立的解码器中精心制作的LUTS代替逻辑块的影响。我们表明,使用LUTS改善关键性能指标(例如,区域,吞吐量,潜伏期)可能比预期更具挑战性。我们提出了三种基于LUT的解码器的变体,并详细描述了它们的内部工作以及电路。基于LUT的解码器与常规展开的解码器进行了比较,该解码器采用固定点表示数字,具有可比的误差校正性能。简短的系统极性代码被用作说明。所有由此产生的展开解码器均显示能够在28 nm FD-SOI技术中以1.4 GHz至1.5 GHz的时钟进行少于10 Gbps的信息吞吐量。与常规展开的解码器相比,我们的基于LUT的解码器的最佳变体可将面积的需求降低23%,同时保留可比的错误校正性能。
特性 JESD204B(子类 1)编码串行数字输出 通道速率高达 16 Gbps 总功耗:1300 MSPS 时为 1.00 W SNR:172.3 MHz 时为 65.6 dBFS(1.59 V p-p 模拟输入满量程) SFDR:172.3 MHz 时为 78 dBFS(1.59 V p-p 模拟输入满量程) 噪声密度 −153.9 dBFS/Hz(1.59 V p-p 模拟输入满量程) −155.6 dBFS/Hz(2.04 V p-p 模拟输入满量程) 0.95 V、1.8 V 和 2.5 V 电源操作 无丢失代码 内部 ADC 电压基准 灵活的差分输入电压范围 1.36 V p-p 至2.04 V p-p(典型值 1.59 V p-p) 2 GHz 可用模拟输入全功率带宽 幅度检测位,可实现高效的 AGC 实施 4 个集成数字下变频器 48 位 NCO 可编程抽取率 差分时钟输入 SPI 控制 整数时钟除以 2 和除以 4 灵活的 JESD204B 通道配置 片上抖动可改善小信号线性度