抽象的语法校正校正(GEC)工具,由先进的生成人工智能(AI)提供动力,在用户输入中有效地纠正了语言的不准确性。但是,它们通常在提供基本的自然语言解释方面缺乏,这些解释是学习语言并获得对语法规则的更深入的理解。在低资源语言(例如孟加拉语)中对这些工具的探索有限。在这样的语言中,革命错误说明(GEE)系统不仅应正确句子,而且还应提供错误的解释。这种综合方法可以帮助语言学习者寻求提高能力。我们的工作介绍了一个现实世界中的多域数据集,该数据集来自孟加拉语扬声器,具有不同的义务水平和语言复杂性。此数据集可作为GEE系统的评估基准标记,允许他们使用上下文信息来生成有意义的解释和高质量的更正。Various generative pre-trained large language models (LLMs), in- cluding GPT-4 Turbo, GPT-3.5 Turbo, Text-davinci-003, Text-babbage- 001, Text-curie-001, Text-ada-001, Llama-2-7b, Llama-2-13b, and Llama-2-70b, are assessed against human experts for performance comparison.我们的研究强调了自动部署孟加拉人GEE的当前最新生成预培训的LLM的局限性。主张进行人干预,我们的发现提议合并手动检查以解决语法错误并提高反馈质量。这种方法提出了一种更合适的策略,以重新确定孟加拉语的GEC工具,并阐明了语言学习的教育方面。
2024 年 12 月 2 日 — 使用 optimum-intel 软件包转换和优化模型 pip install optimum-intel[openvino]。下载并将模型转换为 OpenVINO IR 格式...
在过去的十年中,在数字化梵语文本和推进语言的计算分析方面取得了重大进展。然而,为促进NLP的努力促进了诸如语义类比预测,命名实体识别和其他人的复杂语义下游任务,而其他人仍然有限。此差距主要是由于缺乏建立在大规模梵文文本数据上的坚固,预先训练的梵文模型,因为这需要大量的计算资源和数据准备。在本文中,我们介绍了Sansgpt,这是一种生成的预培训模型,已在大量的梵文文本上进行了培训,旨在促进下游NLP任务的微调和开发。我们的目标是该模型是推进梵语NLP研究的催化剂。此外,我们开发了一种专门针对梵语文本优化的自定义令牌,从而实现了复合词的有效令牌化,并使其更适合生成任务。我们的数据收集和清洁过程涵盖了各种各样的可用梵文文献,以确保培训的全面代表。我们通过对语义类比预测和明喻元素提取进行微调来进一步证明该模型的疗效,分别达到了大约95.8%和92.8%的令人印象深刻的精度。
我们使用生成式人工智能从超过 120,000 份企业电话会议记录中提取管理层对其经济前景的预期。总体衡量标准人工智能经济评分可以稳健地预测短期和未来 10 个季度的未来经济指标,例如 GDP 增长、生产和就业。这种预测能力是现有衡量标准(包括调查预测)的增量。此外,行业和公司层面的衡量标准提供了有关特定行业和个别公司活动的宝贵信息。整合管理层对公司、行业和宏观经济状况的预期的构成衡量标准进一步显著提高了对国家和部门 GDP 增长的预测能力和预测范围。我们的研究结果表明,管理层预期对经济活动具有独特的见解,对宏观经济和微观经济决策都有影响。
● 合同审批与执行 ISUPP 1060 ● 电子和信息技术可访问性 ISUPP 1020 ● 平等机会、骚扰和非歧视 ISUPP 3100 ● HIPAA 合规性 ISUPP 1100 ● 采购 ISUPP 2560 ● 平等机会和平权行动 ISUPP 3080 ● 学术自由 ISUPP 4040 ● 学术诚信与不诚实 ISUPP 4000 ● 教师道德 ISUPP 4120 ● 学生行为准则 ISUPP 5000 ● 知识产权 ISUPP 7010 ● ISU 出口管制 ISUPP 7040 ● ITS 可接受使用 ISUPP 2400 ● ITS 访问控制 ISUPP 2410 ● ITS 采购、开发和维护 ISUPP 2420 ● ITS 资产管理 ISUPP 2430 ● ITS 信息安全 ISUPP 2500 ● ITS 安全角色和职责 ISUPP 2480
保修责任/免责声明的限制:出版商和作者对本工作内容的准确性或完整性不做任何陈述或保证,并特别否认所有担保,包括不限制特定目的的适合性保证。不得通过销售或促销材料创建或扩展保修。此处包含的建议和策略可能不适合每种情况。这项工作的出售是为了了解出版商没有从事法律,会计或其他专业服务。如果需要专业的帮助,则应寻求主管专业人士的服务。出版商和作者都不应对以下引起的损害赔偿责任。在本工作中将组织或网站称为引文和/或潜在信息来源的事实并不意味着作者或出版商认可组织或网站可能提供或建议的信息。此外,读者应意识到,这项工作中列出的互联网网站可能已经改变或消失了这项工作和阅读何时。
在班级学习(CIL)方案中,由于阶级的偏见对当前任务的偏见引起的灾难性遗忘者长期以来一直引起了重大挑战。它主要由判别模型的特征引起。随着生成性多模式模型的日益普及,我们将探索用CIL生成的歧视模型代替歧视模型。,从歧视到生成模式过渡需要解决两个关键挑战。主要挑战在于将生成的文本信息转移到不同类别的分类中。在方面,它需要在生成框架内制定CIL的任务。为此,我们提出了一种新颖的生成性多模式模型(GMM)框架,用于类增量学习。我们的方法直接使用改编的生成模型为图像生成Labels。获得详细的文本后,我们使用文本编码器来阐述文本特征,并采用匹配的功能来确定最相似的标签与分类的标签。在传统的CIL设置中,我们在长期序列的任务方案中取得了更好的影响。under少数CIL设置,与所有当前最新方法相比,我们的精度至少提高了14%,而遗忘的遗忘明显较小。我们的代码可在https://github.com/doubleclass/gmm上找到。
• 干扰项会增加难度 • Stuart Garner 2007 • Harms、Chen 和 Kelleher 2016 • Denny、Luxton-Reilly 和 Simon 2008 • 将正确块和干扰项块配对会降低难度 • Denny、Luxton-Reilly 和 Simon 2008 • 提供缩进会降低难度 • Denny、Luxton-Reilly 和 Simon 2008 • Ihantola 和 Karavirta 2011 • 较少的块会使问题更容易 • Denny、Luxton-Reilly 和 Simon 2008
已经创建了这些生成的AI实施建议和考虑因素,以共享信息和资源,以帮助直接负责执行生成AI工具并指导北卡罗来纳州公立学校的AI素养。请注意,随着生成AI正在新兴的技术,并且正在迅速改变,法律和规则的使用规则也是一份生动文档,它将根据需要进行更新,以反映在这种非常流畅的环境中发生的变化。最后一个更新将显示在每个页面的底部以供您参考。这些准则是围绕北卡罗来纳州数字学习计划的五个重点领域组织的,该计划指导北卡罗来纳州公立学校的数字教学。数字学习计划鼓励安全利用创新技术为学生做好准备,并为未来的学校做好准备,并努力改善学生的成果并支持适当使用技术来推进学习。th是围绕NC数字学习计划的五个焦点领域组织的,如该图形所示。
随着生成式 AI 的使用增加,组织正在重新审视其内部政策和程序,以确保员工和供应商负责任、合法且合乎道德地使用这些工具。隐私未来论坛此前咨询了 30 多位跨部门的法律、技术和政策从业者和专家,以了解最紧迫的问题以及专家如何在政策和培训指导中考虑生成式 AI 工具。FPF 的内部政策考虑旨在作为组织生成式 AI 政策制定的起点,重点介绍组织应制定和/或评估内部政策的领域。更新后的考虑包括需要考虑的更多细节和指导。与往常一样,这个领域在不断变化,这并不构成法律建议。