对大西洋鲑鱼中传染性胰坏死病毒(IPNV)的遗传抗性是一个罕见的特质例子,其中一个基因座(QTL)几乎解释了几乎所有遗传变异。基于此QTL的遗传标记测试在鲑鱼染色体上的26染色体已广泛应用于选择性育种,以显着降低疾病的发生率。在当前的研究中,全基因组测序和功能注释方法被应用于表征QTL区域中的基因和变体。这是通过对IPNV挑战的纯合抗性和纯合易感基因型的鲑鱼炸之间差异表达的分析来补充的。这些分析指向NEDD-8激活酶1(NAE1)基因是QTL效应的推定功能候选者。通过NAE 1基因的CRISPR-CAS9敲除NAE 1在IPN耐药性中的作用,并在大西洋鲑鱼细胞系中NAE1蛋白活性的化学抑制作用,这两者都导致生产性IPNV复制的降低显着降低。相比之下,先前声称为病毒的细胞受体的候选基因的CRISPR-CAS9敲除(CDH 1)对生产性IPNV复制没有重大影响。这些结果表明,NAE 1是影响鲑鱼中对IPNV抗性的主要QTL的原因,提供了进一步的证据,证明了Neddylation在宿主病原体相互作用中的关键作用,并突出了将高通量基因组学方法与TAR GETED基因组编辑结合的遗传基础的疾病抗病基础的高通用基因组学方法的价值。
☐ 质粒纯化配件 菌落筛选柱再生 无内毒素质粒分离 快速质粒分离 标准高纯度质粒分离 酵母质粒分离 ☐ 基因组 DNA 纯化柱再生 来自生物膜的 DNA 来自血液的 DNA 来自 FFPE 的 DNA 来自真菌的 DNA 来自昆虫和无脊椎动物的 DNA 来自植物的 DNA 来自唾液和法医样本的 DNA 来自土壤、粪便和水的 DNA 来自组织和细胞的 DNA 来自酵母和细菌的 DNA ☐ RNA 纯化 真菌、酵母和细菌 miRNA/mRNA 分离 来自生物膜的 RNA 来自血液的 RNA 来自 FFPE 的 RNA 来自昆虫、无脊椎动物和植物的 RNA 来自土壤的 RNA 来自组织和细胞的 RNA RNA 稳定化 RNA 合成试剂 总 RNA 试剂 ☐ 高通量 DNA/RNA 纯化提取系统 滤板高通量试剂盒 ☐ DNA 和 RNA 存储
甚至在基因组测序之前,遗传资源都支持物种管理和育种计划。当前的技术,例如长阅读测序,可以解决复杂的基因组区域,例如富含重复或含量高的GC含量的技术区域。改善的基因组连续性提高了识别结构变异(SV)和转座元素(TES)的精度。我们为澳大利亚亚洲鲷鱼(Chrysophrys auratus)提供了改进的基因组组件和SV目录。新组装更连续,可以鉴定14个centromeres,并从黄鳍seabream中转移26,115个基因注释。与先前的组件相比,注释了35,000个其他SV,包括更大,更复杂的重排。svs和tes表现出偏向染色体末端的分布模式,可能受重组的影响。一些SV与生长相关的基因重叠,强调其意义。这个升级的基因组是研究自然和人工选择的基础,为相关物种提供了参考,并阐明了根据进化形成的基因组动力学。
摘要:植物是各种药物开发过程中生物活性分子的重要来源。四柱树是一种濒临灭绝的药用植物,因其广泛的治疗作用而闻名于世。人们已从这种植物中鉴定出许多生物活性分子,包括许多类次生代谢产物,如黄酮类化合物、酚类化合物、萜类化合物、类固醇、生物碱等。由于其生长缓慢,通常需要 3-5 年才能成为这种植物的商业药用材料。此外,四柱树含有少量的特定生物活性化合物,很难轻易分离。目前,科学家正尝试以不同的方式增加药用植物中生物活性分子的产量或化学合成它们。基因组工具有助于了解药用植物的基因组组织,并导致操纵负责各种生物合成途径的基因。代谢工程通过引入可操纵的生物合成途径来获得高水平的理想生物活性分子,从而可以提高次生代谢产物的产量。代谢工程是一种在短时间内提高次生代谢产物产量的有前途的方法。在这篇综述中,我们重点介绍了用于提高 T. hemsleyanum 中药物应用的次生代谢产物产量的各种生物技术方法的范围。此外,我们总结了代谢工程在提高 T. hemsleyanum 生物活性分子产量方面所取得的进展。这可能有助于减少对 T. hemsleyanum 自然栖息地的破坏,并通过未来经济高效地生产生物活性分子来保护它们。
世界,已经分类了SARS-COV-2的49种重组变体。重组形式的准确分类对于理解特定选择压力下的病毒进化至关重要,对于治疗应用设计(ICTVE病毒委员会)也很重要[8,9]。具有高突变率的病毒倾向于携带耐药突变,而感染病例的治疗通常需要多种药物治疗。及时,准确的进化分类和重组形式的跟踪可以为我们提供更多关于重新检查感染和相应药物进化的见解。更新和新兴的重组谱系中最突出的是XBB,它结合了BJ.1和BA.2.75。该谱系及其亚部队XBB.1被研究为最抗体透发变体,它们能够避免通过疫苗,感染和组合饲养的各种单克隆抗体和抗体[10]。由于XBB逃避了广泛中和抗体的能力,它似乎比早期变体具有优势。
自然历史藏品是宝贵的生物信息宝库,为地球生物多样性提供了无与伦比的记录。博物馆基因组学——利用传统博物馆和低温藏品以及支持这些研究的基础设施进行的基因组学研究——特别促进了生态学和进化生物学、灭绝生物研究以及人类活动对生物多样性的影响的研究。然而,在生物藏品中利用基因组学也暴露出一些挑战,例如数字化、整合和共享藏品数据;更新实践以确保从现有和新藏品中提取最佳数据;以及现代化藏品实践、基础设施和政策,以确保日益多样化的利益相关者公平、可持续地、基因组多样化地使用博物馆藏品。博物馆基因组学收藏已准备好应对这些挑战,并且随着基因组学方法的日益敏感,将通过整合博物馆和基因组科学,催化未来可重复性、创新性和洞察力的时代。