缩写:AAC:腹主动脉肿块; CVB3:Coxsackie病毒B3; CYLD:囊肿症; DCM:扩张的心肌病; DM:糖尿病; DUSP1:双重特异性磷酸酶1; EGFR:表皮生长因子受体; ER:内质网; FSTL1:卵泡样蛋白1; GPX4:谷胱甘肽过氧化物酶4; HAUSP:疱疹病毒相关的泛素特异性蛋白酶; HIF-1α:低氧诱导因子-1α; I/R:缺血再灌注; JAMMS:JAB1/MPN/MOV34金属蛋白酶; KDM3A:赖氨酸特异性脱甲基酶3a; mettl3:类似甲基转移酶的3; MI:心肌梗塞; MIDYS:MIDYS家庭主题与含有新颖的配音家庭的泛素互动; MJD:Machado Joseph病蛋白; NAD +:烟酰胺腺嘌呤二核苷酸; OTU:卵巢肿瘤相关的蛋白酶;耳鼻蛋白:具有线性链接特异性的OTU去泛素酶; PAC:肺动脉连接; RHD:风湿性心脏病; RVH:右心肥大; SERCA2A:SARCO/内质网Ca2 + -ATPase; sirt:sirtuin; Slim1:骨骼肌lim蛋白1; STAT3:转录3的信号换能器和激活因子; T2DM:type2糖尿病; TAC:跨动脉缩空; TAK1:转化生长因子激活的激酶1; UCHS:泛素C末端水解酶; USP:泛素特异性蛋白酶; YB-1:Y-box结合蛋白-1。
非侵入性迷走神经刺激(NVN)是一种已建立的神经刺激疗法,用于治疗癫痫,偏头痛和簇头痛。在这项随机,双盲,假手术的试验中,我们探讨了NVN在帕金森氏病(PD)患者中的步态和其他运动症状治疗中的作用。在患者亚组中,我们测量了精华症中选定的神经营养蛋白,炎症标志物和氧化应激的标志物。33例冻结步态(FOG)的PD患者被随机分为活性NVN或假NVN。基线评估后,指示患者在家中1个月的活动NVNS/SHAM NVNS设备进行6个2分钟的刺激(12分钟/天)。然后对患者进行重新评估。经过一个月的清洗期后,将它们分配给替代治疗臂,并遵循相同的过程。使用活性NVN观察到关键步态参数(速度,姿势时间和步长)的显着改善。虽然血清肿瘤坏死因子α降低,但在主动NVNS治疗后,谷胱甘肽和脑衍生的神经营养因子水平显着增加(P <0.05)。在这里,我们介绍了NVN在PD患者中治疗步态的功效和安全性的第一个证据,并提出NVN可以用作PD患者治疗的辅助治疗,尤其是患有FOG的患者。
6-磷酸葡萄糖脱氢酶(G6PD)将限制速率限制的第一步催化,将磷酸途径(PPP)的第一个步骤催化,将烟酰胺腺苷二核苷酸(NADP)转化为其还原形式:NADPH:NADPH(图1A)。通过各种规范信号通路(例如Jak-Stat,Wnt,MTOR)和翻译后水平(例如,通过磷酸化,乙酰化,乙酰化)在转录级别(例如Jak-Stat,Wnt,MTOR)在转录级别进行调节 。 (图1A-1)。 NADPH的产生对于通过谷胱甘肽还原宿主抗氧化剂防御至关重要(图1A-2),对于合成代谢细胞代谢(包括核苷酸,脂肪酸和氨基酸的合成)也是必不可少的(图1A-3)。 下游的5-磷酸核糖(R5P)对于形成关键核苷酸和辅因子的形成至关重要(图1A-3),除了充当糖酵解分流中间人(图1A-4)。 的确,G6PD在基本的氧化还原稳态和合成代谢代谢中的重要性,在人类生理学(包括免疫反应中)中起了多方面的,无处不在的作用。 在人类种群中,基础G6PD酶活性高度可变,在X连锁的G6PD 中描述了数百个错义基因突变。 (图1A-1)。 NADPH的产生对于通过谷胱甘肽还原宿主抗氧化剂防御至关重要(图1A-2),对于合成代谢细胞代谢(包括核苷酸,脂肪酸和氨基酸的合成)也是必不可少的(图1A-3)。 下游的5-磷酸核糖(R5P)对于形成关键核苷酸和辅因子的形成至关重要(图1A-3),除了充当糖酵解分流中间人(图1A-4)。 的确,G6PD在基本的氧化还原稳态和合成代谢代谢中的重要性,在人类生理学(包括免疫反应中)中起了多方面的,无处不在的作用。 在人类种群中,基础G6PD酶活性高度可变,在X连锁的G6PD 中描述了数百个错义基因突变。 (图1A-1)。 NADPH的产生对于通过谷胱甘肽还原宿主抗氧化剂防御至关重要(图1A-2),对于合成代谢细胞代谢(包括核苷酸,脂肪酸和氨基酸的合成)也是必不可少的(图1A-3)。 下游的5-磷酸核糖(R5P)对于形成关键核苷酸和辅因子的形成至关重要(图1A-3),除了充当糖酵解分流中间人(图1A-4)。 的确,G6PD在基本的氧化还原稳态和合成代谢代谢中的重要性,在人类生理学(包括免疫反应中)中起了多方面的,无处不在的作用。 在人类种群中,基础G6PD酶活性高度可变,在X连锁的G6PD 中描述了数百个错义基因突变。 (图1A-1)。NADPH的产生对于通过谷胱甘肽还原宿主抗氧化剂防御至关重要(图1A-2),对于合成代谢细胞代谢(包括核苷酸,脂肪酸和氨基酸的合成)也是必不可少的(图1A-3)。下游的5-磷酸核糖(R5P)对于形成关键核苷酸和辅因子的形成至关重要(图1A-3),除了充当糖酵解分流中间人(图1A-4)。的确,G6PD在基本的氧化还原稳态和合成代谢代谢中的重要性,在人类生理学(包括免疫反应中)中起了多方面的,无处不在的作用。在人类种群中,基础G6PD酶活性高度可变,在X连锁的G6PD
氧化石墨烯(GO)和Fe 3 O 4超级顺磁性物质是某些应用(例如药物输送)的良好候选者。已经表明,将Fe 3 O 4与石墨烯氧化物结合起来提高了GO的生物学效率。使用新颖的辅助生殖技术(例如促性腺激素注射)能够帮助不育人的生育能力,但是这些方法和高成本的副作用仍然是问题。本研究的目的是研究氧化石墨烯(MGO)对小鼠卵母细胞体内成熟的影响。三十六个星期至8周的女性海军医学研究所(NMRI)小鼠用腹膜内(I.P)注射MGO与激素混合。I.P. 12小时注射MGO与PMSG和HCG混合,在每组中计数从左输卵管获得的中期II(MII)卵母细胞的数量。此外,还研究了谷胱甘肽的免疫环化学染色和卵巢的形态分析。这项研究的结果表明,同时使用MGO,怀孕的母马血清促性腺激素(PMSG)和人类绒毛膜促性腺激素(HCG)会增加MII卵母细胞的数量,并有助于增加卵母细胞的成熟。可以得出结论,MGO可以提高由于血清激素和生长因子吸附的增加,因此可以提高超级排卵激素的效率。
摘要。背景/目的:青蒿素及其衍生物不仅是已获批准的抗疟药,还具有强大的抗癌活性。基于此前报道的青蒿琥酯 (ART) 在宫颈癌中的临床活性,我们研究了一组 12 种不同的生物标志物,并确定了 Wilms 肿瘤 1 (WT1) 蛋白是 ART 的潜在靶点。患者和方法:对接受 ART 治疗的患者在治疗前、治疗期间和治疗后匹配的宫颈癌活检样本进行研究,以了解其是否诱导细胞凋亡 (TUNEL 检测) 以及 Wilms 肿瘤蛋白 1 (WT1)、14-3-3 ζ、分化标志物簇 (CD4、CD8、CD56)、ATP 结合盒转运蛋白 B5 (ABCB5)、谷胱甘肽 S-转移酶 P1 (GSTP1)、诱导型一氧化氮合酶 (iNOS)、翻译控制肿瘤蛋白 (TCTP)、真核延伸因子 3 (eIF3) 和 ADP/ATP 转位酶的表达情况。已选择 WT1 进行更详细的分析,使用分子对接进行计算机模拟,使用重组 WT1 进行微尺度热泳动,并使用转染了四种不同 WT1 剪接变体的 HEK293 细胞进行细胞毒性测试 (刃天青检测)。结果:ART 治疗患者肿瘤后,凋亡细胞比例和 WT1、14-3-3 ζ 和 CD4 表达增加。ART 在计算机中与位于 WT1 的 DNA 结合位点的结构域结合,而二氢青蒿素 (DHA) 以低亲和力与 WT1 的另一个与 DNA 结合无关的位点结合。使用微尺度验证了结果
创伤性脊髓损伤(SCI)是中枢神经系统的严重伤害之一。氧化应激被认为是SCI继发期的迹象之一。因此,在患有脊髓损伤的大鼠中装有硒纳米颗粒的壳聚糖水凝胶的受控药物输送系统的设计和局部应用也被认为是神经组织中抗氧化剂变化的评估。为此,在60名女性大鼠中造成了实验性脊髓损伤,并将其随机分为三组; 1-对照组; 2-壳聚糖水凝胶组和3-壳聚糖水凝胶,装有硒纳米颗粒组。在受伤后的第3,第7,21和28天测量了脊髓组织中某些抗氧化剂的活性。结果清楚地表明,在治疗组创伤后的第3天和第7天,超氧化物歧化酶,丙二醛和谷胱甘肽过氧化物酶的数量的变化显着低于对照组。然而,在治疗组中,与对照组相比,过氧化氢酶活性水平并不显着。在本研究的两个治疗组中,脊髓(损伤部位)中自由基的创伤和产生可能较少。因此,通过减少损伤区域中氧化应激的量,带有硒纳米颗粒的壳聚糖水凝胶可能会对SCI产生积极影响。
摘要:雄性不育在杂交制种中可降低成本、提高种子纯度,但目前雄性不育在番茄杂交制种中的商业化应用尚未得到广泛推广。CRISPR/Cas9介导的基因编辑技术可加速雄性不育在杂交制种中的实际应用。本研究利用CRISPR-Cas9系统在两个番茄亲本中同时敲除雄性不育10(Ms10)和花青素缺失(AA)两个紧密连锁基因座下的DYSFUNCTIONAL TAPETUM1(SlDYT1)和谷胱甘肽S转移酶(SlGSTAA)。产生的dyt1gstaa双突变体因花青素缺乏而出现绿色下胚轴,并表现出稳定的雄性不育性。使用绿色下胚轴作为形态标记,雄性不育的选择效率高达 92%,此后,我们开发了一种借助形态标记选择的雄性不育高效稳定的繁殖策略。此外,我们还生产了 dyt1gstaa 衍生的杂交种子,发现其产量、重量和发芽率与相应的 WT 衍生 F1 种子相当。dyt1gstaa 系统不仅将杂交种子纯度提高到 100%,而且还有助于快速、经济高效地测定。此外,我们还发现该系统对重要的农艺性状没有明显的副作用。这项研究表明,我们利用 CRISPR/Cas9 创建的 dyt1gstaa 系统可以应用于番茄杂交种子生产。
denhem harman是预示着生物体衰老的第一位科学家,这是由产生自由基反应产物的分子病变的积累引起的[1]。因此,他创造了“自由基疾病”一词,以表示与年龄有关的病理学等病理[2]。ever,关于人主动脉中动脉粥样硬化病变区域中游离辐射氧化(FRO)产物含量的第一个实验数据是相当矛盾的[3,4]。不早于二十年后,在动脉粥样硬化患者的主动脉尸检样品中,诸如高性能液相色谱(HPLC)诸如高性能液相色谱(HPLC)的明显升高,这是脂肪氧滴(LOOH)的主要升高[5,6]。重要的是,在人体主动脉局局部动脉粥样硬化损伤的区域中,HPLC采用圆柱使用柱子的LOOH的S和r立体观察到了相等数量的s和r立体,这证明了由于自发性(非酶)的形成,该损害因其自发性(非酶)而形成。同时观察到关键抗氧化剂酶的活性减少,例如Cu,Zn-羟氧化物歧化酶(Cu,Zn-Sod)和含有谷胱甘肽过氧化物酶(GSH-PX)的活性减少。这些数据假设动脉粥样硬化的特征是生产的产生和利用之间的失败[5,8,9]。基于这些结果,可以可靠地将动脉粥样硬化作为“自由基病理学” [5]。
摘要。- 目的:Malvidin是一种在七个果实中发现的natu含量,生物活性多酚。它表现出几种治疗性固定性;但是,有关其对神经退行性临床状况的影响,包括帕金森氏病。这项研究旨在研究马尔维丁在动物模型中对紫藤酮触发的帕金森氏病的治疗特性。材料和方法:为了确定马可丁蛋白的作用,将鱼藤酮(1.5 mg/kg)皮下注射到Wistar大鼠中21天,然后剂量的Malvidin(200和100 mg/kg)。行为测试。在实验的第22天,进行了生化测试,包括超氧化物歧化酶(SOD),谷胱甘肽(GSH),丙二醛(MDA)和催化酶(Catalase(Cat))。The activity of neurotransmit- ters and their metabolites, including acetylcho- line (ACh), acetylcholinesterase (AChE), dopa- mine (DA), norepinephrine (NE), serotonin (5-HT), 3,4-dihydroxyphenylacetic acid (DOPAC), homo- vanillic acid (HVA), and 5-羟基内果酸(5-HIAA)以及神经炎性标记,包括肠道内6(IL-6),白介素1β(IL-1β),肿瘤坏死因子-α(TNF-α)(TNF-α)和核因子因子2型因子2(N-RELYAID因子2)是ESES ESESES-NRF-2)此外,还估计了凋亡标记的水平,即caspase-3。此外,还进行了分支。
摘要:氧化应激是慢性疾病(例如2型糖尿病,心血管疾病和肝病)发展的关键因素。靶向氧化损伤的抗氧化剂疗法在预防和治疗这些疾病方面显示出很大的希望。berberine是一种源自Berberidaceae家族中各种植物的生物碱,可通过多种机制增强细胞防御抗氧化应激。它激活了AMP激活的蛋白激酶(AMPK)路径,从而减少了线粒体活性氧(ROS)的产生并改善能量代谢。此外,它增强了关键抗氧化酶(例如超氧化物歧化酶(SOD),过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPX))的活性,从而保护细胞免受氧化损伤。这些动作使小ber虫有效地管理诸如2型糖尿病,心血管疾病和神经退行性疾病之类的疾病。silymarin是一种源自Silybum Marianum的黄酮材料,对肝脏保护特别有效。它激活核因子2与2相关因子2(NRF2)途径,增强抗氧化剂酶的表达并稳定线粒体膜。另外,水莲蛋白通过螯合金属离子降低了ROS的形成,并且还会减少炎症。这使得对诸如非酒精性脂肪肝疾病(NAFLD)和与酒精有关的肝脏疾病等疾病有益。本综述旨在强调小ber骨和沙龙蛋白发挥其抗氧化作用的不同机制。
