注意:黑鸭审计团队如何评估和介绍审核数据的几个改进。值得注意的是,单个提交的客户代码库现在被分为多个称为“项目”的分析。这项新技术提供了一种更精细的方法来分析代码库,并为客户提供了一些好处,包括更详细的报告和更准确的组件识别和依赖性跟踪。更改还会影响审计数据的呈现。例如,虽然为简单起见,但我们仍然指奥斯拉(Ossra)中的“代码库”,在更精细的层面上,这些代码库需要分析2024年在2024年提交给Black Duck的1,658个单独的项目。
注意:黑鸭审计团队如何评估和介绍审核数据的几个改进。值得注意的是,单个提交的客户代码库现在被分为多个称为“项目”的分析。这项新技术提供了一种更精细的方法来分析代码库,并为客户提供了一些好处,包括更详细的报告和更准确的组件识别和依赖性跟踪。更改还会影响审计数据的呈现。例如,虽然为简单起见,但我们仍然指奥斯拉(Ossra)中的“代码库”,在更精细的层面上,这些代码库需要分析2024年在2024年提交给Black Duck的1,658个单独的项目。
•需要空前的喷气测量能量分辨率•主要的量热法选项:高度粒度(成像) +粒子流量算法(PFA)•PFA量热量:calice calorimetry:在此过程中探索的各种选项•专注于这次演讲:Skintillator-Sipillator-Sipillator-SIPM-SIPM ECAL PROTOTYS和NEW CRYSER ECAL ECAL ECAL ECAL ECAL ECAL ECAL ECAL ECAL
通过实施自动化工作流程来启动和协调基于优先级风险因素的自动化工作流程来启动和协调基于策略的补救和缓解措施,从而促进了安全事件的响应,这不仅简化了事件响应,而且有助于改善平均时间到解决的平均时间(MTTR)。通过使用现有安全工具快速响应真正的威胁,组织可以有效地减少警报疲劳,使安全团队能够专注于重要任务,而不是被无关的警报淹没。前言支持零信托政策的设计和实施,使您能够根据其工作量自动将临床资产分类和分类为有意义的小组。然后简单地定义基于组的细分或访问策略,这些分段或仅反映组之间所需的通信或最不信任的访问关系。我们还基于Granular Medical Device Insight自动生成主动的安全策略,并将这些策略发送到部署和执行的前提平台。这简化了一个原本资源密集的过程,大大降低了潜在的攻击表面并保护关键过程免受破坏。
保护剂和系统性杀菌剂有两种一般类型的杀菌剂类型:保护剂和系统。保护剂杀菌剂(有时称为接触),在施用后留在植物表面上,并且不穿透植物组织。系统性杀菌剂被吸收到植物中,并在植物组织中移动。某些杀菌剂是局部系统性的,在植物内仅移动有限的距离。dicarboximide杀菌剂是该组的好例子。某些系统的系统是适度的系统性,例如DMI杀菌剂,而另一些系统是高度系统性的,并且很容易通过植物的血管运输系统(例如磷酸盐)移动。高度移动系统的示例包括苯甲酰唑。大多数系统性杀菌剂仅在植物组织中向上移动。只有一个全身杀菌剂(Fosetyl-Al)在双向上移动(从叶到根,反之亦然)。全身性杀真菌剂有时会在菌合感染该植物后会抑制杀菌剂,而在感染开始有效之前,植物表面上必须存在保护剂杀真菌剂。配方多种杀真菌产品可在多种配方中获得。用于保护剂杀菌剂,可喷涂的配方(可润湿粉末,可流动,可流动,可散发颗粒,可乳化浓缩物)通常比颗粒状配方提供更好的疾病控制。可喷涂的配方即使对于在植物组织中没有高度流动性的系统物质中,也可以优于颗粒状配方。喷雾设备比颗粒状吊具更透彻地覆盖植物表面。更彻底的覆盖范围可以更好地控制真菌感染叶子。如果应用杀菌剂喷雾剂来控制根病,通常建议在杀菌剂干燥之前轻轻灌溉以将其洗净到根区域中。同样,如果将颗粒状杀菌剂应用于控制根部疾病,请应用于干草皮并在施用后灌溉。杀菌剂混合物为草皮疾病控制制造的几种产品是包含两种或多种活性成分的预包装混合物。混合物提供了一些防止杀菌剂耐药性的保护,通常提供针对草皮疾病的更广泛的活性。预包装的混合物提供了不兼容的便利性和保证,而现场储罐混合则提供了更大的杀菌剂选择和应用率的灵活性。
• 现代工作流程意味着更细粒度的数据收集 • 基于云的系统允许实时数据分析 • 平台提供商(AWS、Google、Microsoft)支持嵌入式 ML • BI 工具(Tableau、PowerBI、Quicksight)支持定制 • RPA 平台解决集成问题并且易于编程
umaxx®稳定的氮肥提供了针对所有三种形式的氮(N)损失的保护 - 浸出,硝化和挥发。这是一种基于尿素的产品,具有46-0-0分析,含有尿素酶和硝化抑制剂。完全可溶的颗粒状,umaxx®肥料无论是干燥还是溶解在喷雾混合物中同样有效。
关键词:颗粒介质;流体力学;流变学、CFD;DEM;人工智能;机器学习和神经网络。背景和目标:该研究项目是圣艾蒂安矿业学院(法国顶级工程学院)与世界核能领导者 Orano 长期合作的一部分。该项目专注于颗粒流建模。这些流体具有与传统流体不同的迷人特征。我们在自然环境(泥流、雪崩……)或工业过程(粉末混合、气动输送、筒仓排放……)中发现它们,其中有各种材料(金属、氧化物、有机化合物……)。我们的研究小组开发了数值策略来高效、快速地模拟涉及大量粒子(10 6 10 18 )的工业过程。在这篇博士论文中,候选人将探索人工智能的潜力,以减少使用离散元法 (DEM) 进行模拟生成的数据量,离散元法通常用于对颗粒物质进行建模。他/她将使用这种简化的信息(例如以本构方程的形式)来输入 CFD 模型。研究结果将发表在该领域的顶级期刊上,并由博士生在国际会议上发表。所需个人资料和技能:至少在以下领域获得硕士学位:流体力学、材料物理、软物质物理、数值模拟。您喜欢建模和解决难题。好奇心、严谨性、参与度、批判性分析能力、倾听能力,当然还有对科学和技术的热情,这些都是成功答辩优秀论文的关键资产。英语流利 + 愿意学习基础法语。申请:文件包括四项:求职信 + 简历 + 至少一封推荐信 + 硕士排名或学术成绩。其他:最好从 2020 年 10 月 1 日开始。在工业资助和合作下
反应材料 (RM) 是一类由金属、金属氧化物和/或聚合物组成的工程颗粒复合材料。这些复合材料在国防应用方面很有吸引力,因为它们的碎裂和能量释放特性或热机械行为可增加向目标的有效能量传递。了解和预测 RM 的热机械行为对于有效设计和应用这些材料至关重要。在这项工作中,我们制作了具有不同成分、孔隙率和粒度的铝和 Al/PTFE RM 样品,以产生不同的机械响应和能量释放。准静态压缩试验、Kolsky 杆压缩试验和高速冲击研究用于评估 RM 样品在应变率在 10 −3 s −1 和 10 5 s −1 之间的机械响应。开发并验证了一种广义参数化模型,用于预测具有不同成分、孔隙率和粒度的 RM 的准静态材料响应。Kolsky 棒样本的碎片分布和高速撞击研究用于评估现有的碎片模型,表明广义的 RM 碎片模型仍然难以捉摸。展示了最小能量状态碎片模型在预测动态碎片粒状复合材料的特征碎片尺寸中的应用,并讨论了其局限性。弹式量热法和通风量热法实验用于探索本质上是多相的 RM 燃烧特性。开发了一种相位兼容的吉布斯最小化自由能平衡求解器,以改进对 RM 反应的能量释放和平衡产物状态的预测,并使用弹式量热法测量进行了验证。关键词:反应材料、铝/PTFE 燃烧、颗粒复合材料、动态碎裂、多相平衡建模、Grady 碎裂模型