curl "http://myodoo.com/graphql" \ -d " query={allRoutes {edges {node {geom}}}} " \ -H "Accept: application/json" \ -H " API-Key: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx " OCA/Server-auth
1。灵活状态表示:节点可以表示带有特征的连续坐标2。 div>连续动作:图形可以扩展到新的2D位置3。连续的欧几里得对称性:2D上的几何图是(2) - 可转化
摘要:在两个化学上相同但具有电子不同的过渡金属二进制(TMDS)之间的连接的超快载体动力学仍然很大程度上未知。在这里,我们采用时间分辨的光发射电子显微镜(TR-PEEM)来探测单层 - 型 - 次要人士(1L-ML)WSE 2连接的超快载体动力学。记录了连接的各个组件记录的tr-peem信号揭示了1L-和7L-WSE 2的子PS载体冷却动力学以及在1L-WSE 2上发生的几个PS激子 - 激子 - 激子 - 激子 - 激子。,我们观察到超高界面孔(H)在约0.2 PS时尺度上从1L--至7L-WSE 2转移。在7l-wse 2中,由于载体重组的重组在约100 ps的时间尺度上,其产生的过量H密度衰减。让人联想到耗尽区域的行为,TREEM图像揭示了H密度在7L-WSE 2界面上的积累,衰减长度约为0.60±0.17μm。这些电荷转移和重组动态与从头量量子动力学一致。计算的轨道密度揭示了电荷转移是从延伸到1L和ML区域的基底平面到位于ML区域上的上层平面。这种电荷转移模式与分层材料的化学均匀连接相关,并且构成了另一种载流子停电途径,应在对其ML旁边发现的1L-TMDS的研究中考虑,这是剥落样品中常见的情况。关键字:过渡金属二分法,外侧连接,界面电荷转移,时间分辨的光发射电子显微镜,超快光谱,非绝热的摘要分子动力学L
下一代对话式 AI 系统需要:(1)逐步处理语言,逐个标记,以提高响应速度,并能够处理对话现象,例如暂停、重新开始和自我更正;(2)逐步推理,允许建立超出所说内容的意义;(3)透明且可控,允许设计人员和系统本身轻松确定特定行为的原因并针对特定用户组或领域进行定制。在这篇短文中,我们介绍了正在进行的初步工作,将动态语法(DS) - 一种增量语义语法框架 - 与资源描述框架(RDF)相结合。这为创建增量语义解析器铺平了道路,该解析器在话语展开时逐步输出语义 RDF 图。我们还概述了如何通过 RDF 将解析器与增量推理引擎集成。我们认为,这种 DS - RDF 混合体满足了上面列出的要求,产生了可用于构建响应式、实时、可解释的会话式 AI 的语义基础设施,可以针对特定用户群体(例如痴呆症患者)快速定制。
*通讯作者摘要。提出了石墨摩擦模型。在此模型中,摩擦过程被描述为表面层弹性变形的过程。此外,包含3-5个原子单层的纳米层,根据Griffiths方案的弹性和迅速崩溃,形成像固体润滑剂这样的层。接下来,中层进入摩擦过程。如果石墨的摩擦被认为与粘性液体的摩擦相似,那么从这种方法中可以得出摩擦取决于运动速度,其结构与贝纳德细胞相似,这意味着发生自组织和摩擦协同作用。不能使用通常的Amonton定律或基于流体动力学理论来解释石墨的摩擦,这是由于它与溶液的粘度相关的事实,其理论尚未完成。由于其表面的重建,亚稳态钻石的表面层变成石墨,其摩擦系数为相同的值k≈0.1。如果您卸下了亚稳态钻石的表面层,即将其变成钻石,然后其摩擦系数为k≈0.6。关键字:石墨,钻石,摩擦,表面,自组织,协同学,速度,润滑,弹性。简介
摘要 — 本文提出了一种基于电网内现行功率流条件的节点聚类新方法。为此,首先,将网络的有功功率流状态建模为有向无环图。该有向图明确表示功率流向何处,这有助于监控和分析系统漏洞。有向无环图表示还可以轻松识别仅提供或吸收有功功率的总线:这些总线分别是纯源节点和纯汇节点。对系统中的每个节点应用迭代路径查找程序,以枚举供电的源节点和其将功率转发到的下游汇节点。然后应用新颖的聚类算法将共享同一组可达源节点和汇节点的节点分组在一起。首先提出这种新颖的聚类方法作为一种工具,通过更好地总结大型电网中的总功率流配置来提高控制室操作员的态势感知能力。所提出的方法应用于两个样本电网,并阐述了与河流系统的类比,将支流、分流和中央主流等概念应用于电网。
政府和明尼苏达州的非营利部门希望成为技术的早期采用者。我们以预期运营需求和提供切实成果的声誉使我们成为将各种群体团结在一起并围绕能源和业务目标保持利益的首选合作伙伴。3。实用问题解决者:我们专注于在现实世界中起作用的实用解决方案。