1 助理教授,2 高中教师,摘要:图论和代数结构是数学中两个截然不同但又相互关联的领域。本研究论文旨在研究这两个领域之间的深刻关系,并探索它们融合的应用和含义。通过深入研究图的代数性质和代数结构的图形表示,我们发现了丰富的数学概念和技术。本文研究了图论的基本概念,包括顶点、边、连通性和图不变量,以及它们与群、环和域等代数概念的联系。此外,它还探讨了图论在代数结构研究中的作用,包括将代数对象表示为图以及使用图论工具解决代数问题。此外,本文还讨论了这种跨学科方法在计算机科学、化学、物理和社交网络等各个领域的应用。通过弥合图论和代数结构之间的差距,这项研究有助于更深入地理解数学概念及其实际应用。
图理论是数学的一个基本领域,探索了顶点之间的关系,这些关系可以代表各种类型的对象,并通过边缘连接。该领域已成为理解和分析各种应用程序(包括社交网络,分子网络,疾病网络和网络建模)中复杂关系的重要组成部分。随着人工智能(AI)的出现及其在日常生活中的蓬勃发展的作用,Graph Doys的应用已扩展到机器学习中。通过利用图理论概念,我们可以降低数据集和简化分析过程的维度,从而增强机器学习模型。本文探讨了如何有效地将图理论应用于机器学习,从而证明了其提高模型性能和数据解释的潜力。
我们考虑了Banerjee等人最近引入的预测图形搜索问题。(2023)。在此问题中,从某个顶点r开始的代理必须使用A(可能未知的)图G找到隐藏的目标节点G,同时最小化总距离。我们研究一个设置,在该设置中,在任何节点V中,代理都会收到从V到G的距离的嘈杂估计。我们在未知的图表上为此搜索任务设计算法。我们在未知的加权图上建立了第一个正式保证,并提供了下限,表明我们提出的算法对预测误差具有最佳或几乎最佳的依赖性。此外,我们进行了数值实验,证明除了对对抗性误差造成反对,我们的算法在误差是随机的典型情况下都很好地形成。最后,我们在Banerjee等人的属性上提供了更改的天然简单性能界限。(2023)对于在已知图表上进行搜索的情况,并为此设置建立新的下限。
摘要:图理论是数学的迷人领域,重点是研究图,它们是代表对象对之间关系的结构。图由由边缘(或连接)链接的顶点(或节点)的集合组成。该领域在不同学科的范围内具有许多应用程序,因为它有效地对关系和结构进行了建模。图理论的强度在于它具有为建模关系建模,应对优化挑战和分析复杂系统的强大框架的能力。其描述实体及其互连的能力使其在科学,工程,社会科学和技术等领域高度相关。结果,图理论是在各个学科中使用的关键主题。
摘要 — 图神经网络 (GNN) 近年来因其处理图数据的能力而引起了广泛的研究关注,并已广泛应用于实际应用中。随着社会越来越关注数据隐私保护的需求,GNN 面临着适应这一新常态的需求。此外,由于联邦学习 (FL) 中的客户端可能存在关系,因此需要更强大的工具来利用这些隐含信息来提高性能。这导致了联邦 GNN (FedGNN) 这一新兴研究领域的快速发展。这个有前途的跨学科领域对于感兴趣的研究人员来说极具挑战性。缺乏对这个主题的深入调查进一步加剧了进入的难度。在本文中,我们通过对这一新兴领域进行全面调查来弥补这一空白。我们提出了 FedGNN 文献的二维分类法:1) 主要分类法通过分析 GNN 如何增强 FL 训练以及 FL 如何协助 GNN 训练,为 GNN 和 FL 的集成提供了清晰的视角;2) 辅助分类法提供了 FedGNN 如何处理 FL 客户端之间的异质性的观点。通过讨论现有作品的关键思想、挑战和局限性,我们展望了未来的研究方向,这些方向可以帮助构建更强大、更可解释、更高效、更公平、更具归纳性和更全面的 FedGNN。
人的大脑是复杂的神经生物学系统的核心,其中神经元,电路和子系统在策划行为和认知方面进行了研究。神经科学的最新研究表明,大脑区域之间的相互作用是神经发育和疾病分析的关键驱动因素[1,2]。使用结构或功能连通性映射人脑的连接组已成为神经成像分析最普遍的范式之一。重新说,从地理深度学习中动机的图形神经网络(GNN)由于其建模复杂的网络数据建模而引起了广泛的兴趣。在文献中,功能和结构联系被广泛认为是用于大脑调查的有价值的信息资源[3]。但是,他们主要在特定的私人数据集上对其建议的模型进行实验。由于道德问题,通常无法公开使用的数据集,并且未披露成像预处理的详细信息,从而使其他研究人员无法重新调查实验。目前尚未进行有关如何设计有效GNN用于脑网络分析的系统研究。为了弥合这一差距,我们提出了BraingB,这是一种用于GNNS的大脑网络分析的基准,并于2023年在IEEE-TMI上发表[4]。1。我们在同类和模式的四个数据集上进行实验,并建议一组在大脑网络上进行有效GNN设计的食谱。基于这四个维度的不同组合作为基准,我们的贡献是四个方面:•建立了一个统一,模块化,可扩展和可重复的框架,用于使用GNN进行大脑网络分析,以实现可重复性。它旨在通过可访问的数据集,标准设置和基线来启用公平评估,以促进计算神经科学和其他相关社区中的协作环境。•我们总结了功能和结构性大脑网络的预处理和施工管道,以弥合神经影像学和ML社区之间的差距。•我们将基于GNN的大脑网络分析的感兴趣的设计空间分解为四个模块:(1)节点feapers,(b)消息通讯机制,(c)注意机制和(d)汇总策略。
当通过某些宽度参数参数化时,可以在XP时间中解决大量NP -HARD图问题。因此,在解决特殊图类类别的问题时,知道所考虑的图形类是否有限制宽度是有帮助的。在本文中,我们考虑MIM Width,这是一个特别通用的宽度参数,每当分解为“快速计算”的图形类别时,它具有许多算法应用程序。我们首先扩展了用于证明图形类MIM宽度的工具包。通过将我们的新技术与已知技术相结合,然后从遗传图类别的角度开始进行系统研究,以对MIM宽度进行边界,并与Clique宽度进行比较,这是一个经过深入研究的更严格的宽度参数。我们证明,对于给定的图H,当h-free graph的类别在且仅当它具有限制的clique-width时具有界限。我们表明(h 1,h 2)无图形是不正确的。我们确定了(h 1,h 2)的几个通用类别的无界图形宽度但有界的含量宽度的无限制图,这说明了中间宽度的力量。此外,我们表明,对于这些类别,可以在多项式时间内找到恒定模拟宽度的分支分解。因此,如前所述,这些结果具有算法的含义:当输入仅限于这样一类(H 1,H 2)无图形时,许多问题变成了多项式的可溶可求解,包括经典问题,包括k-着色和独立设置,统治性问题,已知的LC-VSVP问题,以及LC-lc-lc-lc-lc-vsvp的距离vsvp vesvp的距离很少。我们还证明了许多新的结果,表明在某些H 1和H 2中,(H 1,H 2)的类别的类别无绑定的MIM宽度。集团宽度的界限意味着MIM宽度的界限。通过将我们的结果结合起来,这给出了新的有界和无界的MIM宽度案例,并与已知的有界案例进行了集体宽度的情况,我们介绍了当前最新情况的摘要定理(H 1,H 2) - 免费图形。特别是,我们将所有对(H 1,H 2)的MIM宽度分类为所有对(H 1,H 2)的无图形图(H 1,H 2) V(H 1)| + | v(h 2)| ≤8。当h 1和h 2是连接的图时,我们将所有对(H 1,H 2)分类,除了剩余的有限族和一些孤立的病例。
参数化的复杂性。已知许多广泛关注的计算问题通常是NP -HARD。然而,通常可以使用隐式的许多现实实例来有效地找到确切的解决方案。在特定类别的各种实例上,对各种问题进行了长期的系统研究,并且朝这个方向进行研究构成了计算机科学的基本领域之一。但是,在许多现实情况下,不可能定义我们希望解决的明确类别的实例;实例不像是黑白(是否属于特定类别),而是具有各种灰色阴影(具有一定程度的内部结构)。相对年轻的参数化复杂性范式[6,4,8,16]提供了处理这种情况的理想工具。在参数化设置中,我们将每个实例与数值参数相关联,该参数捕获了该实例的“结构化”。这样就可以开发其性能的算法强烈取决于参数 - 而不是经典设置,在这种情况下,我们经常将拖延性与多项式运行时间相关联,而棘手的性能与超多种元素相关联,参数化算法自然而然地“缩放”与实例中包含的结构量相关联。参数化设置中的易处理性的中心概念是固定参数的拖延(简而言之),这意味着可以通过f(k)·n o(k)·n o(1)的运行时解决给定的问题(f是任意可计算的功能,k是k的值,k是k的值,k是参数的值,n是输入大小)。除了固定参数障碍性外,参数化的复杂性景观还包括各种伴侣概念,例如XP索取性,内核化和W- hardness。
3D对应关系,即一对3D点,是计算机视觉中的一个有趣概念。配备兼容性边缘时,一组3D相互作用形成对应图。此图是几个最新的3D点云注册方法中的关键集合,例如,基于最大集团(MAC)的一个。但是,其特性尚未得到很好的理解。因此,我们提出了第一项研究,该研究将图形信号处理引入了对应图图的域。我们在对应图上利用了广义度信号,并追求保留此信号的高频组件的采样策略。为了解决确定性抽样中耗时的奇异价值分解,我们采取了随机近似采样策略。因此,我们方法的核心是对应图的随机光谱采样。作为应用程序,我们构建了一种称为FastMAC的完整的3D注册算法,该算法达到了实时速度,而导致性能几乎没有下降。通过广泛的实验,我们验证了FastMac是否适用于室内和室外基准。例如,FastMac可以在保持高recistra-
基于扩散的图生成模型可有效生成高质量的小图。但是,很难将它们缩放到包含节点的大小的大图。在这项工作中,我们提出了Edge,这是一种新的基于扩散的图生成模型,可为大图提供生成任务。该模型是通过逆转离散扩散过程来开发的,该离散扩散过程随机去除边缘直到获得空图。它利用扩散程序中的图形稀疏性来提高计算效率。特别是,边缘仅关注图节点的一小部分,并且仅在这些节点之间添加边缘。没有损害建模能力,它的边缘预测比以前的基于基于扩散的属性模型要少得多。此外,边缘可以显式地对训练图的节点度进行建模,然后在捕获图形统计时提高训练图。实证研究表明,边缘比竞争方法更有效,并且可以产生数千个节点的大图。它还优于生成质量的基线模型:所提出的模型发电的图形统计信息与训练图更相似。