本文概述了当前有向图(有向图)上信号处理 (SP) 的现状。方向性是许多现实世界(信息、交通、生物)网络所固有的,它应该在处理和学习网络数据中发挥不可或缺的作用。因此,我们全面回顾了有向图上 SP 的最新进展,通过与无向图的结果进行比较提供见解,讨论新兴方向,建立与机器学习相关领域和统计学因果推断的联系,并说明它们与及时应用的实际相关性。为此,我们首先基于有向图信号变化的新测量方法,调查(正交)信号表示及其图频率解释。然后我们继续讨论滤波,这是推导有向图上 SP 的综合理论的核心部分。事实上,通过基于过滤器的生成信号模型,我们探索了一个统一的框架来研究逆问题(例如,网络上的采样和反卷积)、随机信号的统计分析以及从节点观测到的有向图的拓扑推断。
摘要 — 随着对网络物理系统的攻击日益复杂,欺骗已成为一种有效的工具,通过混淆攻击者的感知来提高系统安全性。在本文中,我们提出了一种欺骗性博弈的解决方案,其中控制代理要在对手存在的情况下满足由共同安全时间逻辑公式指定的布尔目标。代理故意引入不对称信息来创建收益误解,表现为对博弈模型中标记函数的误解。因此,对手无法准确确定博弈的给定结果满足哪个逻辑公式。我们在图上引入了一个称为超博弈的模型来捕捉具有单边收益误解的不对称信息。基于该模型,我们给出了这种超博弈的解决方案,并使用该解决方案来合成隐秘的欺骗策略。具体来说,通过将超博弈简化为具有可达性目标的双人博弈和单人随机博弈,可以开发出欺骗性必胜和欺骗性几乎必胜策略。引入一个运行示例来演示博弈模型和用于策略综合的解决方案概念。索引术语——基于形式化方法的控制;线性时间逻辑;图上博弈;超博弈论。
科学背景。离散的几何形状和组合优化具有丰富的相互作用。对于一般输入而言,许多优化问题是NP的,但对于受限但重要的输入类别,例如,对于某些图和矩阵类,或几何结构起作用时,变得有效/近似于近似。图形及其图纸是数学和计算机科学以及该项目中研究的核心对象。我们考虑将顶点表示为平面点的图形的图纸,边缘用简单的曲线(或线段,直线图中的线段)表示连接点的图形。在简单的图纸中,任何两条曲线最多在一个共同点中相交。在图表及其图纸上的优化问题的背景下,完整的图构成了一个特别有趣且具有挑战性的研究对象:例如,交叉数问题(至少有图形的任何图形至少有多少个交叉点)对于一般图表[4]。但是,完整图的特殊情况不太可能在计算上很难(赋予著名的Harary-Hill猜想[1,6])。同样,C颜色的交叉数问题(发现最小的k,因此给定图形图的边缘可以以c颜色为c颜色,以使单色交叉数的数量最多为k)是已经用于C = 2的通用图[8],而完整图的绘图的复杂性状态为C = 2 [8]。完整图的少数已知硬度结果之一是完整图K n的给定简单绘制是否包含≥k边缘的平面亚绘制[3]。K N的直线图的相应问题很容易,因为每个最大平面亚绘制都是三角剖分,也是最大的。对简单图纸及其上的问题的研究与相交图密切相关,因为图形的每个(简单)绘图D诱导了相交图。因此,识别此类图的结构特性是迈向改进优化算法的有希望的步骤。
摘要 知识密集型任务对机器学习 (ML) 技术提出了重大挑战。常用的方法,例如大型语言模型 (LLM),在应用于此类任务时往往会表现出局限性。尽管如此,人们已经做出了显著的努力来缓解这些挑战,重点是通过知识图谱 (KG) 来增强 LLM。虽然 KG 在表示知识方面具有许多优势,但它们的开发成本可能会阻碍广泛的研究和应用。为了解决这一限制,我们引入了一个框架,用于使用完善的通用 KG 来丰富小规模领域特定知识图谱的嵌入。采用我们的方法,当链接到大量通用 KG 时,适度的领域特定 KG 可以从下游任务的性能提升中受益。实验评估表明性能显着增强,Hits @ 10 指标最高可提高 44%。这个相对未被探索的研究方向可以催化知识图谱更频繁地融入知识密集型任务中,从而产生更稳健、更可靠的机器学习实现,这比普遍存在的 LLM 解决方案更少产生幻觉。
我们研究有向图中的多智能体编队控制问题。相对配置用单位对偶四元数 (UDQ) 表示。我们将这种加权有向图称为单位对偶四元数有向图 (UDQDG)。我们证明,当且仅当对偶四元数拉普拉斯算子与底层有向图的无加权拉普拉斯算子相似时,所需的相对配置方案在 UDQDG 中是合理的或平衡的。提出了直接法和单位增益图法来解决一般单位加权有向图的平衡问题。然后,我们研究了一般非单位加权有向图的平衡问题。报告了 UDQDG 的数值实验。
课程设计是教育的一个重要方面,需要仔细考虑内容相关性、学生进步和教学连贯性。近年来,知识图谱 (KG) 的使用因其能够以结构化格式表示概念之间的复杂关系而受到关注。本文介绍了 KGCD(基于知识图谱的课程设计),这是一种新颖的智能课程设计方法,它利用知识图谱来模拟学科相互依赖性、技能进步和学生学习路径。通过结合人工智能驱动的洞察力,KGCD 为教育工作者提供了一种强大的工具,用于设计符合学生需求和教育目标的自适应个性化课程。该系统提供课程调整的实时建议,确保包含相关内容和主题的逻辑顺序。初步试点研究表明,通过为课程开发和修订提供数据驱动的支持,KGCD 有潜力提高课程连贯性和学生学习成果。
我们针对定义在强连通有向图(有向图)顶点上的函数引入了一种新颖的谐波分析,其中随机游走算子是其基石。首先,我们将随机游走算子的特征向量集视为有向图上函数的非正交傅里叶型基。我们通过将从其狄利克雷能量获得的随机游走算子的特征向量变化与其相关特征值的实部联系起来,找到了一种频率解释。从这个傅里叶基开始,我们可以进一步进行并建立有向图的多尺度分析。我们提出了一种冗余小波变换和抽取小波变换,分别作为有向图的谱图小波和扩散小波框架的扩展。因此,我们对有向图的谐波分析的发展使我们考虑应用于有向图的半监督学习问题和图上的信号建模问题,突出了我们框架的效率。
n log n)。在多项式时间内是否可以解决该问题仍然是算法图理论领域的一个众所周知的开放问题。在本文中,我们提出了一种算法,该算法在时间2 o(n 1/3 log 2 n)中求解n-vertex直径-2图中的3-着色。这是对Mertzios和Spirakis算法的第一个改进,即在一般情况下,即没有对实例图进行任何进一步的限制。除了标准分支并将问题减少到2-SAT的实例外,我们算法的关键构建块是关于3色直径-2图的组合观察,使用概率参数证明了这一点。作为侧面结果,我们表明可以在时间2 o((n log n)2 /3)中求解3-颜色。我们还将算法推广到从小直径图到周期中找到同态同态的问题。
大脑图对大脑区域之间的结构和功能关系进行了建模,在涉及图分类的神经科学和临床应用中至关重要。然而,密集的大脑图构成了计算挑战,包括高运行时间和记忆使用和有限的解释性。在本文中,我们研究了图神经网络(GNN)中的有效设计,以消除嘈杂的边缘来稀疏脑图。虽然先前的作品根据解释性或任务 - 涉及属性去除嘈杂的边缘,但不能保证它们在通过频繁图提高性能方面的有效性。此外,现有方法通常忽略了多个图形的集体边缘去除。为了解决这些问题,我们引入了一个迭代框架来分析不同的稀疏模型。我们的发现是作为下降的:(i)优先考虑可解释性的方法可能不适合图形稀疏性,因为它们可以在图形分类任务中降低GNNS的性能; (ii)与GNN训练同时学习边缘分类比训练后更有益; (iii)跨图的共享边缘选择优于每个图的单独选择; (iv)与任务相关的梯度信息有助于边缘选择。基于这些见解,我们提出了一个新的模型,可解释的图形泄漏(IGS),该模型可增强图形分类性能高达5.1%,而边缘减少了55.0%。IG识别的保留边缘提供了神经科学解释,并得到了公认的文献的支持。