© 编辑(如适用)和作者,经 Springer Nature Singapore Pte Ltd. 独家许可。2023 本作品受版权保护。所有权利均由出版商独家和独家授权,无论涉及全部或部分材料,特别是翻译、重印、重复使用插图、朗诵、广播、在微缩胶片或任何其他物理方式上复制、传输或信息存储和检索、电子改编、计算机软件或通过现在已知或今后开发的类似或不同的方法。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等并不意味着,即使在没有具体声明的情况下,这些名称也不受相关保护法律和法规的约束,因此可以免费用于一般用途。出版商、作者和编辑可以放心地假设本书中的建议和信息在出版之日被认为是真实和准确的。出版商、作者或编辑均不对本文所含材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对于已出版地图中的司法管辖权主张和机构隶属关系保持中立。
抽象是单层整体上的三级闸门驱动器和氮化剂高电子迁移式晶体管(GAN HEMTS),以防止错误的转机,减少反向传导损失和实现快速切换。所提出的栅极驱动器与提供负门电压的外部和集成电容器一起工作。整体集成使电源转换电路的尺寸较小,并且由于其较低的寄生虫而改善了电路性能。集成的MIM(金属绝缘子 - 金属)电容器可改善DV/DT免疫力。的测量结果表明,所提出的GAN-IC实现了3.7 ns t和6.1 ns t o的快速切换速度,并提高了SR降压逆变器的效率。关键字:Gan Hemt,整体集成,三级闸门驱动程序,错误的转机,反向传导损失,高速切换分类:电源设备和电路
以下是 GaN 半导体器件物理学家、工艺工程师、RF/微波设计师、航空航天工业专业人士、辐射效应专家、PM&P 专家、电子设备工程师、研究人员和科学家,他们为本文档的制定提供了帮助。他们参加每周的电话会议,为团队工作做出了贡献,并提出了许多有益的建议。他们贡献了集体智慧、想法、建议和意见。如果没有他们的服务,这些指南的效果会大打折扣。非常感谢他们的帮助。Assad, Chahriar 博士 波音公司技术研究员 Bole, Kenneth 高级研究工程师 空军研究实验室 新墨西哥州科特兰空军基地 Boutros, Karim 博士高级技术鉴定工程师 波音公司 Buttari, Dario 高级工程师 微电子工程师 诺斯罗普·格鲁曼公司 Cantarini, Bill 创始人 HiRel Component Solutions, LLC Carlos, Zenon F. 组件工程师 – 射频设备 波音研究与技术公司
关键词:高电子迁移率晶体管 (HEMT)、磷化铟 (InP)、高频、制造摘要自 DARPA 太赫兹电子项目结束以来,诺斯罗普·格鲁曼公司 (NG) 一直致力于将工艺过渡到 100 毫米,并使先进的 InP HEMT 技术适用于高可靠性 A 类空间应用。NG 的 100 nm InP HEMT 节点目前处于制造就绪水平 (MRL) 9,而砷化铟复合通道 (IACC) 节点处于 MRL 3/4。为了提高 IACC 的 MRL,NG 一直致力于将工艺从材料生长转移到晶圆加工到 100 毫米生产线,并利用 100 nm InP HEMT 工艺的制造和认证专业知识。在整个工艺转移和成熟过程中,NG 克服了工艺重现性、产量和吞吐量方面的挑战,并进行了广泛的可靠性测试。引言在过去二十年中,在美国国防高级研究计划局、美国宇航局/喷气推进实验室和三军的资助下,诺斯罗普·格鲁曼公司 (NG) 通过积极缩小 InP HEMT 尺寸并使用超高迁移率砷化铟复合通道 (IACC) HEMT 结构,展示了高达太赫兹的高电子迁移率晶体管 (HEMT) [1,2] 和单片微波集成电路 (MMIC) [3-6],如表 1 所示。InP 和 IACC HEMT 的关键制造步骤是分子束外延 (MBE)、电子束光刻 (EBL) 栅极、基板通孔 (TSV) 以及缩放互连和钝化工艺。材料生长和制造工艺最初是在 NG 的 75 毫米生产线上开发的。NG 致力于技术成熟工作,以缩小制造差距,以提高 IACC 节点的 MRL [7]。工艺概述 InP 和 IACC HEMT 晶圆采用分子束外延法在半绝缘 InP 衬底上生长。IACC 外延剖面具有复合通道,该通道由夹在两个晶格匹配的 In x Ga 1-x As 层之间的 InAs 层组成 [2]。高电子迁移率 InAs 通道是高频低直流功率操作的关键推动因素。肖特基势垒层和重掺杂帽经过优化,可实现低
摘要 —本文报告了增强型 (E-mode) p-GaN 栅极 Al-GaN/GaN 高电子迁移率晶体管 (HEMT) 的高温 (HT) 稳定性,重点介绍了数字和模拟混合信号应用的关键晶体管级参数。从室温 (RT) 到 500°C 的现场测量表明,VVV th、RRR ON、III D , max 和 III G , max 的趋势与基于半导体特性的一阶变化的预期基本一致。制备的晶体管在 500°C 下 20 天内表现出稳定的性能。据作者所知,这项工作是首次系统地研究 E-mode p-GaN 栅极 AlGaN/GaN HEMT 的 HT 性能,并揭示了它们在混合信号和低压电源电路中的应用。索引词 —GaN、p-GaN、晶体管、高温、长期生存
硅基氮化镓高电子迁移率晶体管 (HEMT) 以其低成本、大面积应用等优势在功率器件应用领域引起了广泛关注 [1]。近年来,双向开关在轧机、电梯、风力发电等许多工业双向功率转换应用中备受青睐。此外,常闭单向 HEMT 是实现高性能双向开关的重要器件 [2,3]。常闭单向 HEMT 通常通过在 HEMT 的漏极中嵌入肖特基势垒二极管 (SBD) 来实现。目前已经采用了氟注入或金属氧化物半导体技术。然而,在常闭单向 HEMT 中尚未见具有良好阈值电压 (V th ) 可控性和稳定性的 p-GaN 栅极技术 [4] 的报道。此外,凹陷式肖特基漏极[5]和场板技术[6]可以为实现具有小开启电压(V on )、高击穿电压(BV)和良好动态性能的单向HEMT提供相关参考。本研究通过实验证明了一种具有凹陷肖特基漏极和复合源漏场板的单向p-GaN HEMT(RS-FP-HEMT)。研究并揭示了漏极电压应力对动态性能的影响。实验。图1(a)和(b)分别显示了传统的带欧姆漏极的p-GaN HEMT(C-HEMT)和提出的RS-FP-HEMT的示意横截面结构。这两个器件都是在GaN-on-Si晶片上制造的。外延结构由 3.4 µ m 缓冲层、320 nm i-GaN 沟道层、0.7 nm AlN 中间层、15 nm Al 0.2 Ga 0.8 N 阻挡层和 75 nm p-GaN 层(Mg 掺杂浓度为 1 × 10 19 cm −3)组成。器件制造首先通过反应离子刻蚀 (RIE) 形成 p-GaN 栅极岛。然后,蒸发 Ti/Al/Ni/-Au 金属堆栈并在 N 2 环境中以 850 ◦C 退火 30 秒。形成凹陷的肖特基漏极
摘要 — 深入研究了增强型 p-GaN 栅极高电子迁移率晶体管 (HEMT) 的低噪声放大性能。该器件具有钨 (W) 栅极金属和与 CMOS 兼容的源极/漏极端子金属触点,表现出 2.7 V 的正阈值电压。在夹断区和导通区分别提取 3.8 pA/mm 和 16.3 nA/mm 的低栅极漏电流密度 (IG)。该器件在 2 GHz 时提供 15.8 dBm 的输入三阶截取点 (IIP3),同时具有良好的线性特性对频率变化的免疫力。在 2 GHz 的工作频率下实现了 0.9 dB 的最小噪声系数 (NF min) 和 12.8 dB 的相关增益 (G a)。此外,通过检查偏置和频率对 NF min 和 G a 的影响,发现在 1 GHz 时 NF min 为 0.65 dB,G a 为 18.3 dB。这项工作为 p-GaN HEMT 在低噪声放大器应用中的利用铺平了道路。
在可靠性研究中,当使用阈值电压 (V th ) 作为指标时,阈值电压 (V th ) 的不稳定性会造成问题,因为它会完全模糊由于实际器件老化而导致的最终漂移。这种不稳定性是在电气特性测量期间观察到的,与晶体管的“偏置历史”有关,这会在结构的不同层中引入载流子捕获/去捕获。因此,需要新的方法来克服这种与捕获相关的不稳定性问题,以便准确监控器件老化。为了解决阈值电压测量的可重复性问题,我们研究了其在 GaN 晶体管上的不稳定性。研究了在实际 V th 测量之前应用的预处理步骤。所提出的预处理方法基于在栅极端子上应用专用的 V GS (t) 偏置,从而导致 V th 的稳定和可重复值。通过分析预处理的 V th 测量后的漏极泄漏测量,可以确定实现观察到的 V th 稳定性的机制。它展示了空穴注入结构的作用。提出预处理 V th 测量方法作为补充测量,以便在未来的可靠性研究中正确跟踪 pGaN HEMT 的老化。
摘要 GaN HEMT 在高功率和高频电子器件中起着至关重要的作用。在不影响可靠性的情况下满足这些器件的苛刻性能要求是一项具有挑战性的工作。场板用于重新分配电场,最大限度地降低器件故障风险,尤其是在高压操作中。虽然机器学习已经应用于 GaN 器件设计,但它在以几何复杂性而闻名的场板结构中的应用是有限的。本研究介绍了一种简化场板设计流程的新方法。它将复杂的 2D 场板 2 结构转换为简洁的特征空间,从而降低了数据要求。提出了一种机器学习辅助设计框架来优化场板结构并执行逆向设计。这种方法并不局限于 GaN HEMT 的设计,可以扩展到具有场板结构的各种半导体器件。该框架结合了计算机辅助设计 (TCAD)、机器学习和优化技术,简化了设计流程。
摘要 - 低温磷化物(INP)高电子动力晶体管(HEMT)低噪声放大器(LNA)用于在4 K处的Qubits读数放大,其中冷却能力有限地暗示活性电路的DC功率是一个必不可少的设计约束。在本文中,在4 K处的超功率(ULP)操作下INP HEMT的RF和噪声性能已被表征。 将INP HEMT的小信号和噪声参数模型提取到1 µW。噪声性能和直流功耗之间的权衡是根据排水电流和排水电压分析的。 制造了4–6 GHz混合低温HEMT LNA专为量子读数而设计的,并针对低于1 MW DC功率的最低噪声进行了优化。 在4 K时测量的LNA的测量性能达到23.1 dB平均增益,平均噪声温度为200 µW DC功率。在本文中,在4 K处的超功率(ULP)操作下INP HEMT的RF和噪声性能已被表征。将INP HEMT的小信号和噪声参数模型提取到1 µW。噪声性能和直流功耗之间的权衡是根据排水电流和排水电压分析的。制造了4–6 GHz混合低温HEMT LNA专为量子读数而设计的,并针对低于1 MW DC功率的最低噪声进行了优化。在4 K时测量的LNA的测量性能达到23.1 dB平均增益,平均噪声温度为200 µW DC功率。