摘要:基于手势的交互是一种自然的人机交互方式,在普适计算环境中有着广泛的应用。本文提出了一种基于加速度的手势识别方法,称为 FDSVM(基于帧的描述符和多类 SVM),该方法仅需要可穿戴的三维加速度计。使用 FDSVM,首先收集手势的加速度数据并用基于帧的描述符表示,以提取判别信息。然后构建基于 SVM 的多类手势分类器以在非线性手势特征空间中进行识别。在包含数周内 12 个手势的 3360 个手势样本的数据集上进行的大量实验结果表明,所提出的 FDSVM 方法明显优于其他四种方法:朴素贝叶斯、DTW、HMM 和 C4.5。在用户相关的情况下,FDSVM 对 4 个方向手势的识别率为 99.38%,对所有 12 个手势的识别率为 95.21%。在用户无关的情况下,它对 4 个手势的识别率为 98.93%,对 12 个手势的识别率为 89.29%。与文献中报道的其他基于加速度计的手势识别方法相比,FDSVM 在用户相关和用户无关的情况下均能给出最佳结果。
摘要:基于手势的交互是一种自然的人机交互方式,在普适计算环境中有着广泛的应用。本文提出了一种基于加速度的手势识别方法,称为 FDSVM(基于帧的描述符和多类 SVM),该方法仅需要可穿戴的三维加速度计。使用 FDSVM,首先收集手势的加速度数据并用基于帧的描述符表示,以提取判别信息。然后构建基于 SVM 的多类手势分类器以在非线性手势特征空间中进行识别。在包含数周内 12 个手势的 3360 个手势样本的数据集上进行的大量实验结果表明,所提出的 FDSVM 方法明显优于其他四种方法:朴素贝叶斯、DTW、HMM 和 C4.5。在用户相关的情况下,FDSVM 对 4 个方向手势的识别率为 99.38%,对所有 12 个手势的识别率为 95.21%。在用户无关的情况下,它对 4 个手势的识别率为 98.93%,对 12 个手势的识别率为 89.29%。与文献中报道的其他基于加速度计的手势识别方法相比,FDSVM 在用户相关和用户无关的情况下均能给出最佳结果。
摘要:基于手势的交互是一种自然的人机交互方式,在普适计算环境中有着广泛的应用。本文提出了一种基于加速度的手势识别方法,称为 FDSVM(基于帧的描述符和多类 SVM),该方法仅需要可穿戴的三维加速度计。使用 FDSVM,首先收集手势的加速度数据并用基于帧的描述符表示,以提取判别信息。然后构建基于 SVM 的多类手势分类器以在非线性手势特征空间中进行识别。在包含数周的 12 种手势的 3360 个手势样本的数据集上进行的大量实验结果表明,所提出的 FDSVM 方法明显优于其他四种方法:朴素贝叶斯、DTW、HMM 和 C4.5。在用户相关的情况下,FDSVM 对 4 个方向手势的识别率为 99.38%,对所有 12 个手势的识别率为 95.21%。在用户无关的情况下,它对 4 个手势的识别率为 98.93%,对 12 个手势的识别率为 89.29%。与文献中报道的其他基于加速度计的手势识别方法相比,FDSVM 在用户相关和用户无关的情况下均能给出最佳结果。
摘要:基于手势的交互是一种自然的人机交互方式,在普适计算环境中有着广泛的应用。本文提出了一种基于加速度的手势识别方法,称为 FDSVM(基于帧的描述符和多类 SVM),该方法仅需要可穿戴的三维加速度计。使用 FDSVM,首先收集手势的加速度数据并用基于帧的描述符表示,以提取判别信息。然后构建基于 SVM 的多类手势分类器以在非线性手势特征空间中进行识别。在包含数周内 12 个手势的 3360 个手势样本的数据集上进行的大量实验结果表明,所提出的 FDSVM 方法明显优于其他四种方法:朴素贝叶斯、DTW、HMM 和 C4.5。在用户相关的情况下,FDSVM 对 4 个方向手势的识别率为 99.38%,对所有 12 个手势的识别率为 95.21%。在用户无关的情况下,它对 4 个手势的识别率为 98.93%,对 12 个手势的识别率为 89.29%。与文献中报道的其他基于加速度计的手势识别方法相比,FDSVM 在用户相关和用户无关的情况下均能给出最佳结果。
摘要 - 为了确保在设计阶段的早期系统的可靠性,使模型能够预测暴露于静电排放(ESD)的系统的行为变得至关重要。这是越来越多的必要性,因为嵌入式电子产品的数量正在增长,并且由于它们被用于人们安全的应用,例如汽车和航空应用。到目前为止,准静态保护设备的准静态模型成功地在失败预测(主要是硬故障)中提供了相当好的结果。今天,此类设备的频率范围的增加需要动态模型能够重现其瞬态行为。在本文中,我们调查了通常在频域中使用的线性设备建模的常规方法,可用于获得ESD保护设备的等效频率模型,ESD保护设备表现出非线性行为。提出并详细介绍了从传输线脉冲(TLP)测量中提取ESD保护香料模型的方法,以解决瞬态和频率模拟。我们证明,在明确的条件下,此类频率模型可以提供准确的结果,以预测与保护设备触发延迟相关的过冲。对模型的验证是在三个现成设备上的TLP和人类金属模型(HMM)条件下进行的。
皮质内脑机构界面(IBCIS)需要频繁地重新校准,以维持由于随着时间的推移积累而导致的神经活动变化而保持稳健的性能。补偿这种非机构性将使您无需进行监督的重新校准期,在这种情况下,用户无法自由使用其设备。在这里,我们介绍了一个隐藏的马尔可夫模型(HMM),以推断用户在IBCI使用期间朝着哪些目标转向。然后,我们使用这些推断的靶标对系统进行重新训练,从而使无监督的神经活动适应。我们的方法在两个月内以大规模的闭环模拟和人类IBCI用户的闭环模拟以优于最高的最新技术。利用跨越五年IBCI记录的离线数据集,我们进一步显示了最近提出的重新校准的数据分配匹配方法如何在长时间尺度上失败;只有目标推断方法似乎能够实现长期无监督的重新校准。我们的结果表明,如何使用任务结构将嘈杂的解码器引导成一个高度表现的解码器,从而克服了临床翻译BCI的主要障碍之一。
第一种方法需要在正常或故障条件下建立系统行为的精确物理模型。当将从传感器捕获的数据与模型的预测进行比较时,可以推断出系统的健康状况。第二种方法使用过去行为的数据来确定当前性能并预测剩余使用寿命 (RUL) (Yakovleva & Erofeev,2015)。物理方法包括失效物理模型。另一种方法是使用简单的裂纹扩展模型来预测受疲劳失效机制影响的系统的 RUL。基于模型的技术需要结合实验、观察、几何和状态监测数据来估计特定失效机制造成的损害。数据驱动技术源自使用历史“运行至失效”(RTF) 数据。这些技术通常用于基于预定失效阈值的估计。可以使用“小波包”分解方法和/或隐马尔可夫模型 (HMM),因为时频特征比单纯的时间变量能提供更精确的结果。然而,使用历史数据预测资产寿命的方法需要了解资产的物理性质(Okoh 等人,2016 年)。数据驱动的 RUL 估算方法是本章的主题。
摘要 动机 在序列中寻找概率基序是注释假定转录因子结合位点 (TFBS) 的常见任务。有用的基序表示包括位置权重矩阵 (PWM)、双核苷酸 PWM (di-PWM) 和隐马尔可夫模型 (HMM)。双核苷酸 PWM 结合了 PWM 的简单性(矩阵形式和累积评分函数),但也加入了基序中相邻位置之间的依赖关系(不同于忽略任何依赖关系的 PWM)。例如,为了表示结合位点,HOCOMOCO 数据库提供了来自实验数据的 di-PWM 基序。目前,两个程序 SPRy-SARUS 和 MOODS 可以在序列中搜索 di-PWM。结果 我们提出了一个 Python 包 dipwmsearch,它为这项任务提供了一种原创且高效的算法(它首先枚举 di-PWM 的匹配词,然后立即在序列中搜索它们,即使它包含 IUPAC 代码)。用户可以通过 Pypi 或 conda 轻松安装,使用文档化的 Python 界面和可重复使用的示例脚本,从而顺利使用 di-PWM。可用性和实施:dipwmsearch 可在 https://pypi.org/project/dipwmsearch/ 和 https://gite.lirmm.fr/rivals/dipwmsearch/ 下根据 Cecill 许可获得。
运动图像(MI)EEG信号在BCI应用中广泛使用,因为它们通过想象身体肢体运动为用户提供了全部控制[9]。想象的和物理的肢体运动引起了MU-RHILTHM同步和去同步,可以使用感觉运动皮层上的EEG技术进行探索[10]。许多作品已经实施了特定技术选择和降低维数的特定技术,其中遗传算法(GA)[11] [11],顺序的正向特征选择(SFF)[12],线性判别分析(LDA)[13] [13],经验模式分解(EMD)[14]和FISHER INCTICNANT INCINICINANT ANARESSICS(FISHER INCTINANT分析)(FDA)[15] [15] [15] [15] [15]。因此,有效的线性分类器(例如支持向量机(SVM)[16]和LDA [17]被广泛用于特征的分类。此外,贝叶斯分类器[18],隐藏的马尔可夫模型分类器(hmm)[19]和K-Nearest邻居(K-NN)分类器[20]同样为EEG特征分类提供了竞争结果。从这个意义上讲,Miao等。[21]将右手食指解码用于手指康复。在他们的角度,Nijisha等人。[22]使用基于常见空间图案(CSP)和单个卷积层的空间过滤器对左手,右手,双手和脚MI-EEG信号进行分类。
运动想象 (MI) 脑电信号广泛应用于脑机接口 (BCI) 应用中,因为它们通过想象肢体运动让用户完全控制 [9]。想象和物理肢体运动会引起微节律同步和去同步,这可以通过使用脑电图技术在感觉运动皮层上进行探索 [10]。许多研究已经实现了特征选择和降维的具体技术,其中包括遗传算法 (GA) [11]、顺序前向特征选择 (SFFS) [12]、线性判别分析 (LDA) [13]、经验模态分解 (EMD) [14] 和 Fisher 判别分析 (FDA) [15]。因此,高效的线性分类器如支持向量机 (SVM) [16] 和 LDA [17] 被广泛用于特征分类。此外,贝叶斯分类器 [18]、隐马尔可夫模型分类器 (HMM) [19] 和 k-最近邻 (k-NN) 分类器 [20] 同样为 EEG 特征分类提供了有竞争力的结果。在这方面,Miao 等人 [21] 将右手食指解码应用于手指康复。Nijisha 等人 [22] 使用基于公共空间模式 (CSP) 的空间滤波器和单个卷积层对左手、右手、双手和脚 MI-EEG 信号进行分类。