皮质内脑机构界面(IBCIS)需要频繁地重新校准,以维持由于随着时间的推移积累而导致的神经活动变化而保持稳健的性能。补偿这种非机构性将使您无需进行监督的重新校准期,在这种情况下,用户无法自由使用其设备。在这里,我们介绍了一个隐藏的马尔可夫模型(HMM),以推断用户在IBCI使用期间朝着哪些目标转向。然后,我们使用这些推断的靶标对系统进行重新训练,从而使无监督的神经活动适应。我们的方法在两个月内以大规模的闭环模拟和人类IBCI用户的闭环模拟以优于最高的最新技术。利用跨越五年IBCI记录的离线数据集,我们进一步显示了最近提出的重新校准的数据分配匹配方法如何在长时间尺度上失败;只有目标推断方法似乎能够实现长期无监督的重新校准。我们的结果表明,如何使用任务结构将嘈杂的解码器引导成一个高度表现的解码器,从而克服了临床翻译BCI的主要障碍之一。
主要关键词