摘要NSG-SGM3和NOG-EXL小鼠将严重的免疫缺陷与人髓样刺激性细胞因子的转基因表达结合在一起,从而在人性化中用CD34 +造血干细胞(HSC)在人性化时显着扩展髓样群体(HSC)。人源化的NSG-SGM3小鼠通常会形成致命的巨噬细胞激活综合征和肥大细胞增生,从而限制了它们在长期研究中的使用(例如,人性化随后是肿瘤异种移植)。目前尚不清楚在人源化的NSG-SGM3小鼠中观察到的相同疾病的人性化的NOG-EXL小鼠在多大程度上。我们比较了原始患者衍生的胶质母细胞瘤模型中这两种菌株中人类CD34 + HSC植入的影响。nsg-sgm3小鼠内部人性化与内部人源化和市售人源性的NOG-EXL小鼠进行了比较。小鼠在人道或研究终点上安乐死,并进行了完整的病理评估。制定了半定量多参数临床病理评分系统,以表征嵌合髓样细胞过度激活(MCH)综合征。NSG-SGM3小鼠在人性化16周后因临床条件严重恶化而安乐死。人性化的NOG-EXL小鼠在人性化后22周幸存于研究终点,并且比NSG-SGM3小鼠表现出较少的MCH表型。主要差异包括与NSG-SGM3小鼠相比,NOG-EXL小鼠中缺乏肥大细胞膨胀和有限的组织/器官受累。通过免疫组织化学评估的人类淋巴细胞的在这两种菌株中相似。在这两种菌株中相似。NOG-EXL小鼠中较长的生存率和MCH表型严重程度降低,可以在肿瘤异种移植研究中使用。NOG-EXL模型比用于免疫肿瘤研究的NSG-SGM3模型更适合,需要在人性化后长期生存。
P1。 Bernadette Tiberi HDAC7对于造血干和祖细胞功能Thomas Jefferson University P2是必需的。 greta zara lps介导的严重炎症重定向骨髓造血干细胞循环和分化命运,通过在希望城市贝克曼研究所P3上重塑其染色质结构。 Brandon T. Tran的骨髓细胞和祖细胞的表观遗传分析鉴定了细胞类型和基因靶标在HSPC训练有素的免疫中至关重要。 贝勒医学院P4。 wantong li解码转录因子依赖性增强子基因调节网络定义造血生态位功能。 俄亥俄州立大学P5。 RNA甲基化景观的单细胞和高分辨率映射 lla甲基化景观的高分辨率图显示了不列颠哥伦比亚省P6的造血干/祖细胞标识大学的表转录特征。 Monica kasbekar正常和美质前的人类HSC表现出对IL-1β哥伦比亚干细胞启动P7的年龄依赖性反应。 Xuan Zhang人类造血祖细胞的多模式地图:对辛辛那提儿童医院医疗中心P8的健康,衰老和疾病的见解。 詹姆斯·斯旺(James Swann)缺乏TET2的造血干和祖细胞中的表观遗传扰动会导致紧急骨髓骨髓疾病哥伦比亚大学P9。 Tanner C. Martinez Cux1通过调节芝加哥大学医学综合癌症中心P10来控制HSC命运。 Mona Vogel葡萄糖保留通过补体成分C3的细胞内水平调节HSC功能。P1。Bernadette Tiberi HDAC7对于造血干和祖细胞功能Thomas Jefferson University P2是必需的。greta zara lps介导的严重炎症重定向骨髓造血干细胞循环和分化命运,通过在希望城市贝克曼研究所P3上重塑其染色质结构。Brandon T. Tran的骨髓细胞和祖细胞的表观遗传分析鉴定了细胞类型和基因靶标在HSPC训练有素的免疫中至关重要。贝勒医学院P4。wantong li解码转录因子依赖性增强子基因调节网络定义造血生态位功能。俄亥俄州立大学P5。RNA甲基化景观的单细胞和高分辨率映射 lla甲基化景观的高分辨率图显示了不列颠哥伦比亚省P6的造血干/祖细胞标识大学的表转录特征。 Monica kasbekar正常和美质前的人类HSC表现出对IL-1β哥伦比亚干细胞启动P7的年龄依赖性反应。 Xuan Zhang人类造血祖细胞的多模式地图:对辛辛那提儿童医院医疗中心P8的健康,衰老和疾病的见解。 詹姆斯·斯旺(James Swann)缺乏TET2的造血干和祖细胞中的表观遗传扰动会导致紧急骨髓骨髓疾病哥伦比亚大学P9。 Tanner C. Martinez Cux1通过调节芝加哥大学医学综合癌症中心P10来控制HSC命运。 Mona Vogel葡萄糖保留通过补体成分C3的细胞内水平调节HSC功能。lla甲基化景观的高分辨率图显示了不列颠哥伦比亚省P6的造血干/祖细胞标识大学的表转录特征。Monica kasbekar正常和美质前的人类HSC表现出对IL-1β哥伦比亚干细胞启动P7的年龄依赖性反应。Xuan Zhang人类造血祖细胞的多模式地图:对辛辛那提儿童医院医疗中心P8的健康,衰老和疾病的见解。詹姆斯·斯旺(James Swann)缺乏TET2的造血干和祖细胞中的表观遗传扰动会导致紧急骨髓骨髓疾病哥伦比亚大学P9。Tanner C. Martinez Cux1通过调节芝加哥大学医学综合癌症中心P10来控制HSC命运。Mona Vogel葡萄糖保留通过补体成分C3的细胞内水平调节HSC功能。shorichiro takeishi造血干细胞数不完全由利基可用性阿尔伯特·爱因斯坦医学院和露丝·L·露丝·戈特斯曼(Ruth L.)和大卫·戈特斯曼(David S.分子医学研究所ULM大学和辛辛那提儿童医学中心
先天性免疫缺陷 (IEI) 是一组异质性遗传性免疫系统疾病。许多 IEI 具有严重的临床表型,导致逐渐发病和过早死亡。已描述了 450 多种 IEI,所有 IEI 的发病率为 1/1,000 – 10,000 人。目前的治疗方案对许多 IEI 并不令人满意。同种异体造血干细胞移植 (alloHSCT) 可以治愈疾病,但需要有合适的供体,并且存在移植失败、移植排斥和移植物抗宿主病 (GvHD) 的风险。自体基因治疗 (GT) 提供了一种治疗方法,同时消除了 alloHSCT 的免疫并发症。基因编辑 (GE) 技术允许在碱基对水平上精确修改生物体的 DNA。在遗传疾病的背景下,这能够纠正遗传缺陷,同时保留内源性基因控制机制。基因编辑技术有可能改变 IEI 的治疗格局。与基因添加技术相比,使用 CRISPR 系统的基因编辑可以修复或替换 DNA 中的突变。许多 IEI 仅限于淋巴区,可能仅通过 T 细胞(而不是造血干细胞)进行校正即可。T 细胞基因编辑具有更高的编辑效率、降低终末分化细胞中有害脱靶编辑的风险以及淋巴细胞植入所需的毒性更低的优势。虽然大多数 T 细胞缺乏 HSC(T 细胞群)的自我更新特性,但 T 干细胞记忆区具有长期多能和自我更新能力。用于 IEI 的基因编辑 T 细胞疗法目前正在开发中,可能为受某些 IEI 影响的患者提供毒性较小的治愈疗法。在这篇综述中,我们讨论了 T 细胞基因治疗的历史、T 细胞基因编辑细胞疗法的发展,然后详细介绍了令人兴奋的临床前研究,这些研究证明基因编辑 T 细胞疗法是几种 IEI 的概念验证。
基因修饰或插入最初于 20 世纪 70 年代初提出作为治疗遗传性疾病的方法 [ 1 ]。造血干细胞 (HSC) 是基因治疗的首选目标,因为它们能够维持终生造血,从而能够持久缓解一系列疾病。目前,遗传性血液疾病的基因治疗方法主要包括从患有潜在遗传缺陷的个体中提取造血干细胞和祖细胞 (HSPC),并在体外进行基因修饰后进行过继转移(图 1 a)。数十年来在临床上进行的同种异体 HSPC 移植为这种新方法的治疗转化提供了路线图。在自体移植基因修饰的 HSPC 时,可以避免同种异体反应性并发症并降低预处理方案的复杂性,与同种异体 HSPC 移植相比,它们具有显著优势。使用基于 γ 逆转录病毒载体的基因递送载体的临床试验最初于 20 世纪 90 年代获得批准,但仅检测到少量校正细胞,并且未观察到潜在缺陷的表型校正。重新关注优化体外转导条件和增加预处理方案以利于转导细胞的植入,导致在原发性免疫缺陷患者中首次获得明确的临床成功[2-4]。然而,随后报告称接受治疗的患者中载体介导的原癌基因插入激活导致恶性肿瘤[5-7],这鼓励了主要基于 HIV-1 慢病毒亚家族逆转录病毒的替代载体设计的开发(图 1b)。慢病毒载体的独特成分促进其在非分裂的 HSPC 内的核易位,进一步增强这些细胞的转导。这些载体中 3′-LTR 启动子和增强子元件的消除也提供了一个关键的自失活 (SIN) 安全特性,以减轻对可能与内源性 HIV 颗粒重组或载体整合基因组位点附近原癌基因意外激活的担忧。然而,对于这些 SIN 载体,转基因表达的效率高度依赖于添加
祝贺世界首个通过 CRISPR 介导的基因编辑治疗镰状细胞病的基因疗法获得批准 亲爱的编辑, CRISPR 作为一项新兴尖端技术,在过去十年中因其在治疗各种遗传疾病方面的潜力而备受关注。最近,这一前景随着 CASGEVY 的突破性批准而成为现实,CASGEVY 是一种基于 CRISPR 的基因疗法,由美国生物制药公司 Vertex Pharmaceuticals Incorporated 和瑞士-美国生物技术公司 CRISPR Therapeutics 共同开发,由诺贝尔奖获得者 Emmanuelle Charpentier 教授共同资助。CASGEVY(exagamglogene autotemcel)是一种一次性治疗细胞基因疗法。该药物旨在治疗 (i) 患有复发性血管闭塞危象 (VOC) 的 12 岁及以上患者的镰状细胞病或 (ii) 患有输血依赖性 β-地中海贫血且适合进行造血干细胞 (HSC) 移植但缺乏合适的人类白细胞抗原匹配相关移植供体的患者的疾病 (1)。镰状细胞病和 β-地中海贫血源于 HBB 基因内的基因突变,该基因负责编码血红蛋白 A (HbA) 的 β-珠蛋白亚基,血红蛋白 A 是成人红细胞 (RBC) 中的主要携氧蛋白。在患有镰状细胞病的个体中,HBB 突变会导致产生异常的血红蛋白分子,即血红蛋白 S (HbS)。这些细胞的镰状形状是有问题的,因为它降低了它们的灵活性,使它们更容易卡在小血管中,导致疼痛和其他并发症 (2)。另一方面,在 β-地中海贫血中,HBB 基因突变导致 β-珠蛋白亚基生成减少或缺失。这导致 α-和 β-珠蛋白链生成失衡,从而导致血红蛋白形成异常。β-珠蛋白链不足或缺失会阻碍血红蛋白的正常功能,导致氧气运输无效,从而导致贫血 (3)。在 CASGEVY 开发之前,这些疾病唯一可用的治疗方法是将健康的 HSC 从供体移植到患者体内。然而,这种程序具有很大的风险,包括可能危及生命的移植物抗宿主病。此外,只有大约 10% 的受该疾病影响的患者有组织相容的兄弟姐妹供体,因此大多数患者无法获得治愈 (4)。
复发/难治性的急性髓样白血病(R/R AML)在化学疗法中的缓解率较低,并且在没有缓解的情况下进行了救助HSCT后的复发可能性很高(1-3)。因此,在HSCT之前恢复缓解以达到成功的造血干细胞移植(HSCT)并降低随后复发的风险,这是一项挑战。近年来,在B细胞恶性肿瘤中CD19嵌合抗原受体T细胞(CAR-T)治疗的成功导致探索使用CAR-T治疗急性髓样白血病(AML)的可行性(4,5)。c型凝集素样分子1(CLL-1)是一种膜蛋白,在反感染中起着关键作用,并通过识别损伤和病原体相关的分子模式来保持体内稳态和自我耐受性,从而导致天生和适应性免疫的调节(6)。人类中的非血液组织表达了非常低的Cll-1(7)。在造血树中,Cll-1几乎由几乎所有粒细胞和单核细胞表达,大约61.8%的前体,41.6%的祖细胞,只有2.5%的CD34 + CD34 + CD38-HSC,但没有用T,B和NK或NK或Eryy(8)表达。cll-1也由嗜碱性粒细胞,嗜酸性粒细胞,粒细胞,巨噬细胞和髓样DC表达(9)。cll-1也在白血病干细胞(LSC)中表达,它们具有无限期自我更新并产生许多子爆炸细胞的能力,这代表了白血病复发最重要的原因之一(10,11)。因此,CLL-1可以用作LSC和疾病复发的标志。更重要的是,CLL-1由> 80%的AML细胞表达,而不是正常的HSC(12,13),允许CLL-1被视为理想的可药物治疗AML的靶标。Zhang等人的自体CLL-1 CAR-T治疗的I/II期临床试验。 招募了八名R/R AML的儿童,所有这些儿童都接受了氟达拉滨和环磷酰胺(Flu/cy)的调节方案后接受自体CLL-1 CAR-T治疗(14)。 流感/CY治疗后,患者经历了1 - 2级细胞因子释放综合征(CRS),没有致命的不良事件。 在这四个获得骨髓形态完全缓解(CR)和最小残留疾病(MRD)阴性状态的孩子中,一个孩子表现出阳性的BM形态和MRD,一个孩子以不完整的计数恢复(CRI)获得CRZhang等人的自体CLL-1 CAR-T治疗的I/II期临床试验。招募了八名R/R AML的儿童,所有这些儿童都接受了氟达拉滨和环磷酰胺(Flu/cy)的调节方案后接受自体CLL-1 CAR-T治疗(14)。流感/CY治疗后,患者经历了1 - 2级细胞因子释放综合征(CRS),没有致命的不良事件。在这四个获得骨髓形态完全缓解(CR)和最小残留疾病(MRD)阴性状态的孩子中,一个孩子表现出阳性的BM形态和MRD,一个孩子以不完整的计数恢复(CRI)获得CR
o Verview Lenmeldy是一种自体造血干细胞(HSC)基于基因治疗,用于治疗症状前婴儿晚期(PSLI),症状前早期青少年(PSEJ)或早期症状早期(PSEJ)或早期幼年(ESEJ)早期(ESEJ)过通(ESEJ)过通(Esej)过通(ESEJ)过通(ESEJ)过通(ESEJ),儿童(Mldomation Childron in Childron)(Mldstrantic tryprophy)(Mldstrymlatimation)(Mld)。1 lenmeldy作为一次性(每生)单剂量通过静脉输注给出。1最低建议的lenmeldy剂量基于MLD疾病亚型,为4.2 x 10 6分化34+(CD34+)细胞/kg,9 x 10 6 cd34+细胞/kg和6.6 x 10 6 x 10 6 CD34+细胞/kg患者的PSLI,PSEJ,PSEJ,PSEJ和ESEJ MLD相应地相应地相应;所有疾病亚型的最大建议剂量为30 x 10 6 CD34+细胞/kg。整个治疗过程涉及多个步骤。lenmeldy是根据儿童自己的HSC制备的,这些HSC是通过动员和放置程序收集的。此过程需要一天或多天才能收集足够数量的干细胞来制造Lenmeldy。收集的干细胞被发送到制造部位,用于制造Lenmeldy;这需要5到6周。在收到Lenmeldy之前,在合格的治疗中心进行了几天的化学疗法(与Busulfan),以准备骨髓以接受新细胞。完成骨髓性调节后,在输注Lenmeldy之前必须至少进行24小时的冲洗。在输注Lenmeldy后,该儿童在合格的治疗中心保持了4至12周的时间来监测恢复。用编码人类芳基硫酸酶A(ARSA)基因的慢病毒载体转导基因疗法。代理将ARSA基因的功能副本添加到孩子自己的HSC中。在患有PSLI,PSEJ和ESEJ MLD的儿童中已经建立了Lenmeldy的安全性和有效性。1涉及Lenmeldy治疗的20名PSLI儿童,7个患有PSEJ的儿童和10名ESEJ MLD儿童的临床试验;儿童的年龄在8个月和19个月之间(中位数12个月),11个月至5.56岁(中位年龄为2.57岁)和2.54岁至11.64岁(中位年龄为5.84岁)。尚未在患有该疾病晚期的儿童中确定Lenmeldy的安全性和功效。疾病概述MLD是由于ARSA基因突变引起的罕见的,遗传性的,常染色体隐性的,神经退行性的溶酶体储存疾病。2-4 MLD估计会影响美国每40,000个人中的一个。 MLD患者的ARSA活性降低(通常2-4 MLD估计会影响美国每40,000个人中的一个。MLD患者的ARSA活性降低(通常
接受白细胞手术。收集后,这些单元将立即或冷冻存储后注入受体。•造血祖细胞(HPC)(也称为干细胞)从原始的造血干细胞移植(HCST)供体提升旨在恢复造血干细胞移植后的造血或增强移植功能(HSCT)。曾对接受供体淋巴细胞输注(DLI)的同种异体造血细胞移植(HCT)的个体的证据摘要,证据包括荟萃分析,系统评价,非随机研究,非驱动研究,观察性研究和病例系列研究。相关结果是总体生存和疾病状况的变化。在各种血液系统恶性肿瘤中以及针对诸如计划或先发制人的DLI,复发的治疗或混合到充分供体嵌合体的转化率的各种适应症中,患者显示出对DLI做出反应的证据。同种异体HCT后,对DLI的反应率在慢性骨髓性白血病(CML)中最好,随后是淋巴瘤,多发性骨髓瘤和急性白血病。CML以外,当使用化学疗法诱导来减轻DLI之前的肿瘤负担时,临床反应最有效。证据足以确定该技术对具有造血干细胞移植(HSCT)的个体的净健康结果的影响,这些人接受造血祖细胞(HPC)(也称为干细胞)的增强,该证据包括系统的综述 - 荟萃分析和观察研究。相关结果是总体生存和疾病状况的变化。较差的移植功能是HSCT的严重并发症,并且已经在多种血液系统恶性肿瘤中研究了HPC促进功能,以恢复造血或增加的移植功能(促进HSCT)。尽管证据不健壮,因为HSCT后HPC提升没有高质量的RCT,但可用的证据证明了对HSCT后非移植或延迟植入的个体的有益效果。此外,大多数机构和共识指南建议在第一次HSCT时,应收集足够的造血干细胞(HSC)以进行两种干细胞移植。在非植物或延迟植入的情况下,可以将增强干细胞(BSC)用于第二次移植,也可以用于干细胞的促进。证据足以确定技术对净健康结果的影响。对于具有同种异体HCT的个体,他们接受了经过修改的(遗传或其他体内修饰)DLI,证据包括病例系列。相关结果是总体生存和疾病状况的变化。案例系列已经证明了该技术的可行性,没有严重的不利影响。没有与标准治疗进行比较的,施用改良的供体淋巴细胞的功效尚不清楚。证据不足以确定技术对健康结果的影响。
基因组编辑工具的出现,例如CRISPR-CAS9,已使遗传和基于细胞的疗法的发展用于治疗遗传疾病(Porteus,2019年)。进行了多项临床试验,以测试自体基因编辑的造血干细胞(HSC)的安全性治疗遗传疾病(NCT03655678,NCT04208529,NCT0485576肝脏的编辑以治疗经性淀粉样变性(ATTR,NCT04601051)或遗传血管性水肿(HAE,NCT05120830)(Frangoul等,2021; Gillmore等,2021)。值得注意的是,目前大多数开放临床试验都集中在基因敲除(KO)而不是同源性基因修复上。KO不需要同时递送同源序列来纠正引起疾病的突变,因此通常与较高的成功编辑效率有关。由于我们已经广泛的知识和骨髓中HSC移植的既定程序(Consiglieri等,2022)以及脂质纳米颗粒技术的可用性,因此这些示例的可行性得到了加速,并有效地靶向了肝脏(QIU等,20221)。Unfortunately, such techniques and technologies are not available for targeting the lung speci fi cally, therefore, expanding the use of genome editing tools to treat other inherited disorders, such as cystic fi brosis (CF), primary ciliary dyskinesia (PCD) and surfactant protein disorders impacting the lungs is of signi fi cant interest.图1总结了这些研究的发现。CF是由CF跨膜电导调节剂(CFTR)基因突变引起的。在这些情况下,体内基因组编辑受到挑战的限制,其中1)将基因组编辑试剂递送到所需的细胞中,基因校正所需的同源重组需要CRISPR-CAS9和CRISPR-CAS9和同源DNA才能将其传递到同一细胞中,以及2)对理想细胞/干细胞的长期疾病矫正的理解。EX-VIVO基因编辑可能是一种更有效的方法,但是基因编辑的细胞和调理方案的递送,使上皮接受细胞的植入而没有损害患者的肺功能,但仍表现出重要的挑战。在本研究主题中,我们提供了四篇文章,描述了产生自体基因校正的气道基底细胞(BCS),移植气道BC的努力,并讨论了扩展这些工具以治疗影响肺泡的表面活性剂蛋白质疾病的潜力。一个主要挑战是气道干细胞的有效基因校正,同时保持其再生潜力。许多基因校正工作都集中在CF上,因为它是影响肺部最有特征的遗传疾病之一(Suzuki等,2020; Vaidyanathan等,2020)。在CFTR中已经描述了2000多种不同的突变,因此,人们对替换整个CFTR编码序列的兴趣引起了极大的兴趣,以开发适用于所有CF患者的治疗。但是,CFTR编码序列(4,500 bp)接近常用腺相关病毒的包装极限
各种干细胞具有特殊的能力,可以帮助我们理解和治愈许多疾病。本文着眼于不同类型的干细胞,从可以变成任何细胞类型的细胞到具有特定作业的细胞类型。我们将探讨这些干细胞的独特特征及其对医学研究和治疗的含义。干细胞的类型--------------------干细胞是特殊的,因为它们可以成为体内许多不同类型的细胞。了解其潜力,了解它们的类型和亚型:全能干细胞:这些是最强大的干细胞,能够变成任何细胞类型,包括发育婴儿生长所需的细胞类型。受精卵是全能细胞的一个例子。多能干细胞:除了胎儿发育所需的细胞几乎可以成为体内几乎所有细胞类型。有两种主要类型: *胚胎干细胞(ESC):这些来自早期胚胎,可以变成许多不同类型的细胞。*引起的多能干细胞(IPSC):这些是通过更改成年细胞具有与ESC相同的能力而制成的。多能干细胞:这些细胞通常可以成为几种类型的细胞,通常在特定组内。示例包括: *肠内干细胞 *神经干细胞 * hemetapoetic干细胞寡头干细胞:这些细胞只能变成几种相关的细胞类型。一项单位干细胞:通用性的干细胞最少,这些干细胞只能成为一种特定类型的细胞。一个例子是肌肉干细胞,总是发展成肌肉细胞。参考:Baykal,B。我们对干细胞分类的方式尚未固定,但是随着新研究的变化。全能干细胞--------------------------------------------能够变成完整生物体发育所需的任何细胞类型。它们仅存在于胚胎生长的最早阶段,为整个生物体的形成奠定了基础。早期存在:全能干细胞在受精后,胚泡阶段之前就开始工作。这为所有胚胎发展奠定了基础。完全的分化能力:这些细胞可以变成每种细胞类型,包括对胎儿发育至关重要的细胞类型。合子是全能细胞的最常见例子 - 它是由卵和精子的结合形成的,最终引起了生物体中的每个细胞。Pluripotent Stem Cells ------------------- These stem cells stand out because they can turn into almost any cell type in the human body, except those needed for fetal development.它们的多功能性使它们成为生物学研究中的关键资源,并具有巨大的医疗潜力。在此处给出的文字:再生医学,疾病建模和药物筛查在很大程度上取决于多能干细胞。此类别包括胚胎干细胞(ESC)和诱导的多能干细胞(IPSC),每个干细胞具有不同的起源和特性。起源和重编程:ESC是由胚泡的内部细胞质量(早期胚胎)引起的,而IPSC是成年细胞重编程为胚胎干细胞样状态。(n.d。)。打开访问文本。细胞和组织研究。细胞和组织研究。ESC和IPSC的潜力在于它们分化为任何细胞类型的能力。神经生物学应用:多能干细胞在神经生物学中发挥了作用,特别是在产生大脑的关键神经元和神经胶质细胞方面。新兴方案增强了特定神经元和神经胶质细胞亚型的产生。** ESC(胚胎干细胞)** ESC是从胚泡的内部细胞质量中提取的,标志着胚胎发育的最早阶段。它们分化为任何细胞类型的能力使它们在生物学研究中很有价值,尤其是在再生医学,疾病建模和药物筛查中。** IPSC(诱导多能干细胞)** IPSC是通过将成年细胞重编程为胚胎干细胞状态而创建的。他们有能力分化为几乎任何细胞类型,将它们定位为再生医学中的宝贵资产,具有开发特定于患者的疗法和推进疾病建模的巨大潜力。**多能干细胞**多能干细胞是专门的干细胞,可以区分特定组织或器官内的特定细胞范围。虽然不如具有更大潜力的干细胞用途,但多能干细胞对于维持人体健康组织至关重要。这些细胞具有特定组织的存在,这意味着它们在身体的各个部位,例如心脏,肺和牙龈,在那里有助于再生和修复。在心脏的情况下,这些细胞有助于心肌再生,展示了它们在器官特异性愈合中的重要作用。同样,在肺中,多能干细胞对于修复受损组织的维修至关重要,强调了它们在呼吸健康中的重要性。这些多能干细胞具有分化为各种细胞类型的能力,使其对于组织修复和再生很有价值。这些细胞有三种主要类型:间充质干细胞(MSC),可以在骨髓,脂肪组织和脐带血中发现;肺中的支气管肺泡干细胞;和牙周韧带中的多能干细胞。间充质干细胞(MSC)因其在再生医学和组织工程中的潜在使用而引起了极大的关注。可以从各种来源中孤立它们,包括骨髓,脂肪组织和脐带血,使它们很容易用于研究和治疗目的。MSC还具有明显的矿化和成骨分化的能力,将其定位为用于骨骼和牙科组织工程中应用的主要候选者。此外,MSC还显示出免疫调节特性,这使它们在治疗与免疫相关疾病和减少各种疾病疾病的炎症方面可能有用。总体而言,间充质干细胞具有多个好处,包括其再生潜力,免疫调节特性和可用性,使其成为有希望的高级治疗策略的候选人。然而,MSC也存在一些挑战,例如其动作机制的复杂性仍然被部分理解,这对它们的治疗有效性和安全性提出了问题。视频:什么是干细胞?此外,归巢和靶向机制需要进一步的研究,以充分了解这些细胞如何与人体中特定的组织和器官相互作用。在此处给定文章的文本MSC在治疗一系列无法治愈的疾病方面表现出了希望,因为它们具有再生和调节免疫系统MSC应用的能力。MSC的应用扩展到各个领域,包括神经系统疾病心血管疾病,免疫相关疾病和创新的药物输送车。尽管有潜在的MSC仍面临有关临床环境中隔离和给药技术的安全问题。干细胞移植可以通过更换或重建患者的造血系统来治疗各种疾病。这包括治疗镰状细胞病和白血病等非恶性和恶性疾病。此外,在美国FDA的监督下,已经对使用干细胞进行自身免疫性疾病,遗传疾病和其他问题进行了临床试验。干细胞移植是治疗血清癌,淋巴瘤和脊髓瘤等血液癌的一种选择。可以治疗的特定疾病包括急性淋巴细胞白血病(ALL),慢性淋巴细胞性白血病(CLL)和多发性骨髓瘤。非血液癌,如肾上腺素疾病,hur综合征和严重的性贫血,也可以用干细胞移植治疗。此外,遗传的代谢性疾病,例如Krabbe疾病和代谢性疾病,可以从这种治疗中受益。NSC的来源包括胚胎和成年大脑以及诱导的多能干细胞(IPSC)。神经干细胞(NSC)是位于大脑中的专门细胞,具有自我更新和分化为神经元,星形胶质细胞和少突胶质细胞的能力。它们在大脑发育和修复中起着至关重要的作用,使它们成为治疗神经系统疾病的潜在治疗剂。这些细胞可以在保持自我更新能力的同时在体外进行培养。寡头干细胞是具有分化为几种密切相关的细胞类型的专用细胞。它们是在致力于特定细胞谱系的成年器官组织中发现的,例如它们产生角膜和结膜细胞的眼表面。干细胞:组织修复和再生寡头干细胞的主要参与者:这些干细胞有助于产生有限的血细胞,例如淋巴样干细胞,这些血细胞分化为特定的淋巴细胞类型。一项单位干细胞:尽管分化潜力有限,但单位干细胞可以仅分化为一种细胞类型。它们在修复和再生的成年器官组织中起着至关重要的作用,该组织专用于特定的细胞谱系。乳腺再生:乳腺中长寿命的Blimp1阳性腔干细胞在整个成人生活中驱动器官发生,以保持组织的健康和功能。胚胎乳腺发育:胚胎乳腺中表达Notch1的细胞具有一能力的干细胞特性,对于早期乳腺组织的发育至关重要。结论:干细胞疗法在治疗各种疾病和与年龄相关的疾病方面具有巨大的希望。组织维护和修复:干细胞通过区分单个细胞类型来补充特定组织,从而确保健康和功能。但是,在将干细胞疗法纳入主流医学实践之前,需要仔细考虑几个因素。多功能性和潜力:各种干细胞类型为细胞置换疗法,组织修复甚至器官发育提供了机会。造血干细胞(HSC)的记录:造血干细胞一直处于干细胞研究的最前沿,在临床试验中使用了40多年的使用。间充质干细胞(MSC)的突出性:间充质干细胞是最广泛研究的干细胞之一,在几种疾病的临床试验中表现出广泛的分化潜力,并且在临床试验中至关重要。干细胞是独特的细胞,具有分化为各种细胞类型或无限期分裂的潜力。他们在替换因疾病引起的受损细胞或丢失的细胞中起着至关重要的作用。干细胞的概念一直引起人们的注意,作为治疗包括糖尿病在内的各种疾病的治疗方法。DVC茎使用脐带组织衍生的间充质干细胞提供了先进的干细胞处理,这可能具有控制糖尿病的潜力。感兴趣的人应咨询其医疗团队,以了解这些治疗的适用性和潜在好处。干细胞具有三个基本特性:自我更新,不分化和分化。间充质干细胞用于治疗各种疾病。他们可以长期划分和更新自己,保持无针对性或未分化,并分化为构成不同组织类型的专用细胞。这些特性通过克隆性测定在体外可视化,其中对单个细胞的分化能力进行了评估。2022年11月29日从Zhao,X。和Moore,D。L.(2018,1月)检索。神经干细胞:发育机制和疾病建模。2022年11月29日从〜:text =神经%20stem%20细胞培养在理解干细胞生物学及其潜在治疗应用的基础研究中起着至关重要的作用。生成更多可以取代受损细胞的细胞,干细胞在受控条件下进行培养。胚胎干细胞比成年干细胞更有效,因为它们能够分化为各种细胞类型。但是,成年干细胞的分化能力效果较小,并且受到限制。结果,胚胎干细胞主要培养以获得更多这些细胞。必须相应地量身定制不同干细胞类型的培养条件,例如胚胎或成年干细胞。此外,干细胞培养的最终目的也会影响所使用的参数。在整个过程中,干细胞在自我更新和分化之间不断平衡。某些干细胞需要非标准试剂,例如喂食器层或条件培养基,这可能会影响培养条件。一个主要的挑战是确保定义明确的细胞培养条件,尤其是pH和氧气压力。该过程涉及在大气部分氧气下维持孵化器中的细胞和控制pH值。-Craig A. Kohn由Ted -Ed。干细胞可以根据其源或位置进行分类;类型包括胚胎干细胞,这些干细胞存在于称为胚泡的早期胚胎的内部细胞质量和成年干细胞,这些细胞在整个体内的各种组织中发现。成年干细胞具有使其能够修复并形成其居住在特定组织中的细胞的特性。与胚胎干细胞不同,这些细胞的效力较小,不能区分为各种细胞类型。成年干细胞存在于其他细胞为其存活提供必要的液体和营养所需的液体中。它们可以在儿童和成人的表皮,骨髓和肠壁等组织中找到。表皮层中的干细胞连续分裂以形成新的细胞,因为旧角质形成细胞被脱落。在骨髓中,成年干细胞分化为不同的血细胞类型和免疫细胞。它们也存在于大脑中,但出生后分化有限。成年干细胞的局限性导致产生诱导多能干细胞(IPSC),可以通过重编程过程从成年细胞产生。IPSC具有类似于胚胎干细胞的性质,使它们能够分化为各种细胞类型。它们对于治疗医学至关重要,因为它们可能会为所有器官生成细胞,并通过生成患者特异性IPSC进行研究来研究遗传疾病。围产期干细胞,源自胎儿膜和脐带细胞,具有胚胎和成年干细胞的特征,使其成为中间类型。由于它们可能形成各种细胞类型并有助于研究遗传疾病,因此它们在治疗医学上具有重要意义。产前和围产期干细胞:潜在的治疗应用产前干细胞具有免疫特征和多能的可塑性,使其对医学研究和治疗有吸引力。从胚外组织中分离出来,这些细胞避免了道德问题,并且是活跃的,非肿瘤的,并且有可能分化为各种细胞类型。围产期干细胞在治疗肾脏疾病,心脏病,炎症性疾病,骨骼再生和脊髓损伤方面有应用。他们的效力和分裂能力使它们在研究和治疗目的中很有价值。间充质干细胞(MSC)是在肌肉,肝脏和骨髓中发现的多能干细胞。人类MSC可以分化为骨细胞,脂肪细胞,软骨细胞,神经细胞和肝细胞,使其成为通过免疫调节和抗炎分子分泌来治疗慢性疾病的有用工具。干细胞研究旨在了解干细胞在医疗应用中的特性,研究其发育,稳态和潜在用途。然而,围绕干细胞采购的道德问题引发了争议。这包括研究1型糖尿病患者的干细胞转化为产生胰岛素的细胞。在此处,此处的文章文本近年来已经取得了重大进展,胚胎干细胞的使用降低以及道德问题的相应减少。重点的一个领域是了解未分化的干细胞如何发展并分为专门的细胞,研究人员致力于控制这一过程以产生预期的结果。此外,在对人类或动物进行测试之前,还使用干细胞在实验室环境中测试新药。干细胞研究的应用是多种多样的,包括再生医学,疾病治疗和新药物的测试。在再生医学领域,干细胞研究表明,严重损伤或慢性疾病患者的组织或器官有望。但是,干细胞研究也存在挑战,特别是与伦理和安全问题有关的挑战。一个主要问题是使用胚胎干细胞,这引发了政治和宗教辩论。此外,某些干细胞系可能具有增加移植风险的基因突变,从而更难获得成功的结果。尽管面临这些挑战,但干细胞研究的潜力在促进我们对人类生物学和发展新疗法的理解方面的潜力是广泛的。使用造血干细胞的疗法发育已使癌症治疗后可以移植患者。总体而言,尽管干细胞研究存在局限性,但其进度对未来的医疗突破有很大的希望。对于发育至关重要的胚胎干细胞不能在生物体中无限期地自我更新,而是迅速将各种细胞类型与三个主要细菌层区分开。在实验室条件下,可以将它们永久续签,以防止其分化。利用这些细胞的重大挑战之一是获得足以产生所需细胞类型的大量挑战。细胞分化的过程,无论是引导还是自发,通常都会导致各种细胞类型的不良混合物。研究人员已经开发了创建干细胞系的方法,可以无限期地种植这些干细胞系,例如遗传研究和再生医学。这些线是从人类或动物来源(包括胚胎,成人或诱导的干细胞)得出的。干细胞系具有无休止地在体外更新自己的独特能力,使其在科学和医学应用中非常有价值。即使在开发了这种不确定的分裂能力之后,他们仍保留其原始的遗传特性。基于来源:胚胎,成人和诱导的干细胞系的三种主要类型。与胚胎相比,成年线在产生分化细胞方面的有效性较低,但诱导的线可以无限期地自我更新,同时保持其分化为各种细胞类型的能力。涉及这些细胞系的研究导致了了解人组织分化和功能以及药物和细胞移植疗法的发展。干细胞疗法,也称为再生医学,旨在通过利用干细胞的潜力来修复功能失调和受伤的组织。但是,由于形成畸胎瘤的风险,多能细胞在人类中的使用较少。自1960年代以来,从骨髓收获的多能干细胞已成功地用于治疗各种血液疾病。间充质干细胞的应用显示出有望治疗不仅形成整个关节的疾病。此外,使用多能细胞代替多能细胞可以防止免疫系统的移植排斥反应。总体而言,干细胞疗法为改善医疗设施和各种疾病的方法提供了有希望的途径。对干细胞疾病的研究取得了重大进展,但是在可以治疗之前使用它们的生物学,操纵和安全性仍然有很多了解。需要更多的研究来释放其在治疗各种健康状况方面的全部潜力。