lyfgenia最初在2023年获得FDA批准,是一种自体造血干细胞基因疗法,用于治疗12岁或以上患有镰状细胞疾病的患者和瓦索 - 闭塞病史(VOC)。输注Lyfgenia后,转导的CD34+造血干细胞(HSC)植入骨髓中并分化以产生含有生物活性βA-T87Q-环球蛋白的红细胞,这些细胞将与α-蛋白结合使用,与α-蛋白结合,以产生含有βA-T87Q-Globin的功能性HB(HB)。HBAT87Q具有相似的氧结合亲和力和氧血红蛋白解离曲线至野生型HBA,可降低细胞内和总血红蛋白S(HBS)水平,并旨在在空间上抑制HBS的聚合,从而限制了红细胞的镰刀。SCD是由β球蛋白基因中的遗传突变引起的,导致称为镰状血红蛋白(HBS)的异常血红蛋白。红细胞变得僵硬,会过早溶血导致贫血,并且无法将氧气转运到临界器官。患者因血管熟悉的危机而遭受严重的疼痛。镰状细胞疾病的第一线治疗是羟基脲。lyfgenia(Lovotibeglogene autotemcel)在满足以下条件时将考虑覆盖:
lyfgenia最初在2023年获得FDA批准,是一种自体造血干细胞基因疗法,用于治疗12岁或以上患有镰状细胞疾病的患者和血管闭塞病史(VOCS)。输注Lyfgenia后,转导的CD34+造血干细胞(HSC)植入骨髓中并分化以产生含有生物活性βA-T87Q-环球蛋白的红细胞,这些细胞将与α-蛋白结合使用,与α-蛋白结合,以产生含有βA-T87Q-Globin的功能性HB(HB)。HBAT87Q具有相似的氧结合亲和力和氧血红蛋白解离曲线至野生型HBA,可降低细胞内和总血红蛋白S(HBS)水平,并旨在在空间上抑制HBS的聚合,从而限制了红细胞的镰刀。SCD是由β球蛋白基因中的遗传突变引起的,导致称为镰状血红蛋白(HBS)的异常血红蛋白。红细胞变得僵硬,会过早溶血导致贫血,并且无法将氧气转运到临界器官。患者因血管熟悉的危机而遭受严重的疼痛。镰状细胞疾病的第一线治疗是羟基脲。lyfgenia(Lovotibeglogene autotemcel)在满足以下条件时将考虑覆盖:
肝纤维化加剧了进行性代谢功能障碍相关的脂肪性肝炎(MASH)的死亡率和并发症。在MASH背景下,腺苷2A受体(A2AAR)在肝纤维化中的作用仍然不确定。这项研究旨在阐明A2AAR信号通路的参与以及一种新型有效A2AAR拮抗剂在治疗添加氯氨基酸定义的氯氨基酸性的土豆丝诱导的小鼠中的肝纤维化方面的功效(CDAHFD)。增加了纤维化标记,而已知的A2AAR拮抗剂ZM241385降低了这些标记。一种新型的A2AAR拮抗剂RAD11不仅减弱了纤维化的进展,而且与ZM241385相比,在具有MASH,活化的原发性肝细胞和LX-2细胞的小鼠中,对A2AAR信号通路的抑制更大。rad11通过靶向活化的HSC和肝细胞表现出双重抗纤维化机制。在MASH条件下,其优于ZM241385的优质抗纤维化功效源于其抑制A2AAR介导的信号传导的能力,抑制HSC激活,减少肝细胞中的肝脂肪生成,并减轻脂质积累诱导的氧化应激胁迫介导的肝脏介导的肝损伤。这项研究阐明了A2AAR信号传导与肝纤维化之间的关系,将RAD11作为一种有效的治疗剂,用于管理MASH和肝纤维化。
摘要:过渡型三金属硫化物NiCoMn-S因在混合超级电容器中的高比容量而备受关注,而Ti3C2则因具有标志性的二维层状结构和优异的导电性而被视为一种潜在的新型电极材料。本文通过简单的一步水热法将NiCoMn-S纳米颗粒与二维层状Ti3C2复合,首次将其应用于混合超级电容器(HSC)的正极。大量的NiCoMn-S纳米颗粒分布在Ti3C2表面,为氧化还原反应提供了丰富的电化学活性位点。此外,Ti3C2的二维层状结构为离子传输提供了额外的电子通道,并降低了储能过程中的电荷转移阻力。 NiCoMn-S/Ti3C2-3.4%在1 A g-1密度下实现了347.1 C g-1的比容量,比纯NiCoMn-S(1 A g-1时270.2 C g-1)高28%。最后以NiCoMn-S/Ti3C2-3.4%为正极,RGO为负极组装成混合超级电容器(HSC),在1 A g-1密度下实现了164.3 C g-1的比容量,在15 kW kg-1的比功率下实现了16.2 Wh kg-1的高比能量。
摘要:造血干细胞(HSC)的可及性来操纵和重新填充血液和免疫系统,使它们处于细胞和基因治疗发展的最前沿。基因组编辑工具的最新进展,尤其是针对定期间隔短的短质体重复序列(CRISPR)/CRISPR相关蛋白(CAS)和CRISPR/CAS衍生的编辑系统,已改变了基因治疗景观。它们的多功能性以及编辑基因组序列并促进基因破坏,校正或插入的能力,扩大了潜在基因疗法靶标的范围,并加速了许多可通过移植或改良的HSC进行治疗的稀有疾病的潜在治疗疗法的发展。正在进行的发展旨在解决HSC修饰的效率和精度,治疗的耐受性以及相应疗法的分布和负担能力。在这里,我们概述了HSC基因组编辑领域的最新进展,作为对遗传疾病的治疗,并总结了相应的临床前和临床研究中最重要的发现。重点是基于HSC的疗法,我们还讨论了在基因组编辑的临床翻译中需要克服的技术障碍,并表明进步可能会促进最常见的疾病以外的常规应用。
lyfgenia最初在2023年获得FDA批准,是一种自体造血干细胞基因疗法,用于治疗12岁或以上患有镰状细胞疾病的患者和血管闭塞病史(VOCS)。输注Lyfgenia后,转导的CD34+造血干细胞(HSC)植入骨髓中并分化以产生含有生物活性βA-T87Q-环球蛋白的红细胞,这些细胞将与α-蛋白结合使用,与α-蛋白结合,以产生含有βA-T87Q-Globin的功能性HB(HB)。HBAT87Q具有相似的氧结合亲和力和氧血红蛋白解离曲线至野生型HBA,可降低细胞内和总血红蛋白S(HBS)水平,并旨在在空间上抑制HBS的聚合,从而限制了红细胞的镰刀。SCD是由β球蛋白基因中的遗传突变引起的,导致称为镰状血红蛋白(HBS)的异常血红蛋白。红细胞变得僵硬,会过早溶血导致贫血,并且无法将氧气转运到临界器官。患者因血管熟悉的危机而遭受严重的疼痛。镰状细胞疾病的第一线治疗是羟基脲。lyfgenia(Lovotibeglogene autotemcel)在满足以下条件时将考虑覆盖:
严重影响的患者可能会经历多种并发症,例如由于小周围障碍物(Vaso-Occlyclusive Carlisis [voc];镰状细胞危机),急性疾病,急性胸部综合征(ACS;与肺炎症状的急性症状)有关,由于小血管造成的疾病(VOS-cocle危机),反复发生的急性疼痛(VOE)反复急性疼痛(VOE)(VOES),可能是症状,刺激性症状。骨骼,肾脏,心脏,肝脏和肺部或导致严重的感染并发症,例如功能性低下和早亡。治疗包括控制并发症,缓解疼痛,防止感染并最大程度地减少器官损伤的措施。标准药理治疗包括药物,例如羟基脲(HYDEREA),镇痛药和输血。造血干细胞移植适当的供体患者,直到基因治疗的发展为止一直是治愈的选择。基因疗法现在为没有愿意HLA匹配的家庭捐助者的严重镰状细胞疾病的成员提供治疗选择。食品药物管理局(FDA)批准的适应症:•Lyfgenia是一种自体造血干细胞基因疗法,用于治疗12岁或以上患有镰状细胞疾病的患者和血管核分裂事件的病史。lyfgenia使用过体内慢病毒载体基因疗法,该疗法通过通过BB305 LVV。注意:Lyfgenia只能在Lyfgenia合格的治疗中心(QTC)进行管理。CMS覆盖指南未针对此服务制定。CMS覆盖指南未针对此服务制定。输注Lyfgenia后,转导的CD34+ HSC植入了骨髓中并分化以产生含有生物活性βA-T87Q-珠蛋白的红细胞,该细胞将与α-蛋白结合起来,从而产生含有βA-T87Q-球蛋白(HBAT87Q)的功能性HB。HBAT87Q具有相似的氧结合亲和力和氧血红蛋白解离曲线至野生型HBA,可降低细胞内和总血红蛋白S(HBS)水平,并旨在抑制HBS的聚合,从而限制红细胞的小镰刀。每个Lyfgenia QTC都根据其在移植,细胞和基因治疗等领域的专业知识进行了仔细的选择。有关找到合格的治疗中心的信息,请访问https://www.lyfgenia.com/find-a-qualified-wartment-center该计划使用该计划的指导,以确定其双重产品计划成员和MASSHEALTH的医疗保险计划成员和CMS的MACEDARE ADLATICTION的覆盖范围。CMS国家承保范围确定(NCD),地方保险确定(LCD),地方覆盖范围文章(LCA)和医疗保险手册中包含的文件和Masshealth医疗必要性确定是覆盖范围确定的基础。当CMS和MassHealth不提供指导时,将使用该计划的内部开发的医疗必需指南。Point32Health按照MassHealth的覆盖标准涵盖了Lyfgenia。
患有β-丘脑贫血或镰状细胞疾病的个体以及具有30%胎儿血红蛋白(HBF)的胎儿血红蛋白(HPFH)的遗传性持久性似乎无症状。在这里,我们使用了非整合HDAD5/35 ++矢量,该矢量表达了腺嘌呤基础编辑器(ABE8E)的高效,准确的版本(在体内安装A –113 A> g HPFH突变中,在健康CD46/β-yac小鼠中含有人β-糖的γ-蛋白启动子中的γ-蛋白启动子中的γ-蛋白启动子。我们的体内造血干细胞(HSC)编辑/选择策略仅涉及S.C.和i.v.注射,不需要骨髓和HSC移植。在CD46/β-YAC小鼠中的体内HSC碱基编辑中导致> 60%–113 A> g转化率,β-蛋白的30%γ-球蛋白在70%的红细胞中表达。 重要的是,未检测到在圆形序列或计算机中预测的位点的脱靶编辑。 此外,RNA-Seq没有发现体内编辑小鼠的转录组的临界变化。 在体外,在β-thal症和镰状细胞疾病患者的HSC中,基本编辑器载体介导的有效效率–113 A> g转化和γ-珠蛋白表达的重新激活,并随后对等肌酸细胞的表型校正。 由于我们的体内基础编辑策略在技术上是安全且技术简单的,因此它具有流行血红蛋白病的发展中国家的临床应用。导致> 60%–113 A> g转化率,β-蛋白的30%γ-球蛋白在70%的红细胞中表达。重要的是,未检测到在圆形序列或计算机中预测的位点的脱靶编辑。此外,RNA-Seq没有发现体内编辑小鼠的转录组的临界变化。在体外,在β-thal症和镰状细胞疾病患者的HSC中,基本编辑器载体介导的有效效率–113 A> g转化和γ-珠蛋白表达的重新激活,并随后对等肌酸细胞的表型校正。由于我们的体内基础编辑策略在技术上是安全且技术简单的,因此它具有流行血红蛋白病的发展中国家的临床应用。
评论文章 白血病干细胞的当前概念:起源、特征及其在急性髓系白血病中的临床意义 Visaali Sivakumar、Soundarya Ravi、Prabhu Manivannan* *通讯作者:drprabhumanivannan@gmail.com 摘要:尽管治疗方法取得了重大进展,但被诊断患有急性髓系白血病 (AML) 的患者仍然面临不良预后,即使在最初完全缓解后也经常会复发。复发的发生是由于常规治疗无法消除骨髓内被称为白血病干细胞 (LSC) 的特定细胞亚群。这些特殊细胞表现出自我更新能力,并具有增殖和分化为白血病母细胞的能力。LSC 中多种基因突变的积累使其对标准化疗产生抗药性。已经开展了多项研究来识别 LSC 的表型特征和遗传特征,目的是将它们与正常的造血干细胞 (HSC) 区分开来。了解 LSC 在 AML 治疗耐药性中的作用为开发针对性和更精确的治疗方法铺平了道路,尤其是针对复发性 AML 患者,而不会影响健康的 HSC。本综述详细阐述了 LSC 的起源、表型和基因型特征,以及它们在 AML 生物学中的作用,并简要介绍了针对 LSC 的疗法。关键词:急性髓系白血病、白血病干细胞、免疫表型、靶向治疗、复发性 AML
b 型血红蛋白病,包括镰状细胞病 (SCD) 和 b 型地中海贫血,是导致血红蛋白结构或生成异常的普遍单基因疾病,影响全球数百万人。目前可用于治疗 SCD 和 b 型地中海贫血的疗法主要是对症治疗和异基因造血干细胞移植 (HSCT)。异基因造血干细胞移植是唯一的治愈性疗法,但有局限性。使用基因改造造血干细胞 (HSC) 的基因疗法有望成为一种有效的治愈性疗法。最近批准的基于基因改造造血干细胞的体外疗法 (CASGEVY、LYFGENIA、ZYNTEGLO) 已显示出对 SCD 和 b 型地中海贫血的显著和持久的治疗益处。在这篇评论文章中,我们讨论了当前的遗传方法和创新策略,以确保 SCD 和 b 型地中海贫血的基因治疗安全有效,并总结了已完成和正在进行的临床试验的结果。我们还讨论了使用 CRISPR/Cas 技术进行体内基因编辑治疗镰状细胞性贫血和β-地中海贫血的前景和挑战,这可能会简化制造和治疗过程。体内基因治疗可以最大限度地降低体外基因治疗的风险,并可以克服与复杂基因治疗产品相关的多重障碍,让更多患者能够获得治疗,尤其是在这些疾病高度流行的发展中地区。