bo完成了他的教育,应用工程(Teknisk Fysik)在斯德哥尔摩科技研究所,KTH,1982年。他在瑞典微波技术学院(Simt),1982年开始担任材料和设备复合半导体开发的科学家。BO很快就负责从头开始启动Ingaasp的Hydride蒸气相位外观。同时,在BO小组中设计了,重建和设置Ingaasp材料特征,例如PL,DCX射线,Hall测量和IV。BO 1983年在我们团队中的贝尔实验室默里·希尔(Murray Hill NJ)提供了12个月的职位,以开发和改善Ingaasp的HVPE。在这里,他还发现了一种新的方法,可以使HVPE和氮作为载气进行半胰岛INP:Fe。贝尔实验室后,他加入了Epitaxx,普林斯顿从RCA旋转了6个月。他的小组开始开发高级1,3 UM的LED,进行光纤交流。
目前,由金属有机化学蒸气沉积(MOCVD)生长的富含硼龙硼氢化硼(H-10 BN)硝酸硼(H-10 BN)超级氮化液(MOCVD)生长的超速型硝酸硼(H-10 tbn)超级氮化液带固定型的热中性探测器保持创纪录的所有固体检测率在59%处于59%的固体检测器中。为了克服MOCVD增长的短期繁殖,包括固有的低增长率和不可避免的杂质,例如金属有机物中的碳,我们在这里证明了使用Halide蒸汽相结合(HVPE)的SEMI SENIQUICENCE的天然六边形硝酸硼(H-BN)半裸型硼硼(H-BN)半裸型WAFER的增长。电运输表征结果表明,这些HVPE种植的材料具有1 10 13 x cm的电阻率,电荷载体迁移率和寿命为2 10 4 cm 2 /v s。用100 l m厚的H-BN晶片制成的检测器表明,热中子检测效率为20%,对应于500 V的运营电压,对应于60%的收费收集效率。此初始演示为高效H-BN中性探测器的高效型核能造成了核能的核能,这可能会创造出较高的核能,这可能会产生核能的核能,这可能会创造出不合时宜的核能,这可能会导致不合时宜,这可能会造成良好的核能,这可能会造成良好的成本,这可能会导致良好的核能,这可能会导致良好的核能,这是可降低的,这可能会产生良好的核能,这可能会产生良好的核能。核废料监测和管理,医疗保健行业以及物质科学。
掺铒GaN(Er:GaN)由于其优于合成石榴石(如Nd:YAG)的物理特性,是固态高能激光器(HEL)新型增益介质的有希望的候选材料。Er:GaN在1.5μm区域发射,该区域对视网膜是安全的并且在空气中具有高透射率。我们报告了对通过氢化物气相外延(HVPE)技术合成的Er:GaN外延层进行的光致发光(PL)研究。HVPE生长的Er:GaN外延层的室温PL光谱在1.5μm和1.0μm波长区域分别分辨出多达11条和7条发射线,这对应于GaN中Er3+从第一(4I13/2)和第二(4I11/2)激发态到基态(4I15/2)的斯塔克能级之间的4f壳层内跃迁。这些跃迁的观测峰值位置使得我们能够构建 Er:GaN 中的详细能级。结果与基于晶体场分析的计算结果非常吻合。精确确定 4 I 11/2、4 I 13/2 和 4 I 15/5 状态下斯塔克能级的详细能级对于实现基于 Er:GaN 的 HEL 至关重要。© 2020 作者。除非另有说明,否则所有文章内容均根据知识共享署名 (CC BY) 许可证获得许可(http://creativecommons.org/licenses/by/4.0/)。https://doi.org/10.1063/5.0028470
β -ga -ga 2 O 3具有8 mV/cm的高度有希望的临界电场,与其他宽带镜头材料相比,具有改进穿孔的设备[1,2]。从熔融和超过10μm的表现层生长的4英寸晶片,这些层由卤化物蒸气相增长的外观层和高度可控制的掺杂浓度生长,铺平了垂直功率设备的方式。β -ga 2 O 3社区始终提高了高于SIC或GAN优于SIC或GAN的平均批判性电场,这适用于900 V超过900 V [1]的中/高压基础设施。垂直β -GA 2 o 3功率电子近年来取得了巨大进步,例如各种表面/界面工程,各种边缘终止,准内式垂直晶体管等。
1。I. Tsiapkinis,IKZ柏林,带开源软件的浮动区域过程的多物理模拟2。C. Rhode,Ikz Berlin,用于应变工程功能氧化物层的己酸盐底层晶体的生长和研究3.F. Kannemann,Ikz Berlin,熔融4的有机晶体生长的实验研究。N. sahsuvar,Uni Freiburg,全无机CS 2 Agbibr的合成和表征6双钙钛矿单晶用于辐射检测器应用5。C. Hartmann,Ikz Berlin,散装ALN晶体的生长具有有效的直径和表征25 mm Aln底物的表征6。L. Grieger,Freiberg Instruments,使用表面光伏特光谱研究7.R. Karhu,IISB Erlangen,4H-SIC A-Plane底物上的同性恋8。P. Wimmer,IISB Erlangen,4H-SIC底物中残留应力的光弹性测量用于评估晶体生长过程9.M. Zenk,IISB Erlangen,对气体组成和流速的影响以及动力学参数对Gan Boules HVPE生长期间生长速率的影响。V. Zimmermann,MPI Stuttgart,Prnio的高压光浮动带3单晶11。A.Böhmer,Uni Bochum,单晶的生长和跨金属化合物的表征,作为学士学位和硕士学生的高级实验室课程12.J. Strahl,Uni Frankfurt,Eumn 2 x 2,x = Si,ge 13。F. Walther,M。Ocker,Uni Frankfurt,材料的晶体生长接近关键端点和Altermagnets 14。S.
氮化盐和相关的宽带半导体(WBS)近年来一直受到广泛关注。其背后的主要原因是半导体的几个相关的高功率/高频材料参数,例如高分解场和低内在载流子浓度,具有带隙的比例。基于WBS的半导体设备允许在极端条件下运行,例如高温和电场。从IR到深色紫外线的各种波长,使带隙工程以及出色的电子传输特性使氮化物也使电子和光电设备具有吸引力。今天,基于氮化物的设备被广泛用于高性能雷达(主要是3D AESA),电信(LTE-A,5G),电力电子系统,发光二极管和激光器。尽管在过去的二十年中取得了长足的进步,但所有这些设备仍然是发挥其全部潜力的激烈研究的主题[1-4]。在本期特刊中,发表了八篇论文,涵盖了宽带隙半导体设备技术的各个方面,从底物到epi-Egrowth和epi-Growth和emaking topor掺杂,再到HEMTS的新型过程模块,垂直整合的LED和激光二极管,以及基于NWS的纳米固醇。K. Grabianska等。报道了波兰Unipress的最新批量GAN技术进展[5]。已经对两个过程进行了彻底研究,即基本的氨热生长和卤化物蒸气期的外观以及它们的优势,缺点和详细讨论的前景。M. Stepniak等。 [8]。M. Stepniak等。[8]。作者假设在几年内高质量2英寸。真正的散装gan底物将大量提供,但如今,质量制造的主要方法将是HVPE,将AM-GAN晶体作为种子。[6]研究了GAN和Algan/Gan/Gan Hetereostrustures的选择性区域金属有机蒸气(SA-MOVPE)的过程,该过程旨在使用自下而上的建筑进行HEMT技术。获得了出色的生长均匀性,适当的结构预科,并获得了组成梯度的精确控制。讨论了SA-MOVPE过程在使基于GAN的3D纳米和微结构中用于电声,机电和集成的光学设备和系统的应用。K. Sierakowski等。[7]报道了高压在高温下植入后植入后退火的报道。讨论了该过程的热力学,并在两个方面研究了其GAN加工的应用。首先专注于GAN:mg用于P型掺杂,第二位于GAN上:被视为分析掺杂剂扩散机制的案例研究。为了防止gan表面分解,研究了退火过程的不同构造。mg激活超过70%,与与掺杂的gan相似的电性能一起达到了70%。Algan/GAN金属 - 胰蛋白酶高导体高电动晶体管(MISHEMT),其具有低温同育(LTE)生长的单晶ALN GATE介电介质。闸后退火效应