量子纠缠不仅对于理解厄米多体系统起着至关重要的作用,而且对于非厄米量子系统的研究也具有重要的意义。在本文中,我们利用双正交基中的微扰理论,解析地研究了非厄米自旋梯的纠缠哈密顿量和纠缠能谱。具体来说,我们研究了耦合的非厄米量子自旋链之间的纠缠特性。在强耦合极限(J rung ≫ 1)下,一阶微扰理论表明,纠缠哈密顿量与具有重整化耦合强度的单链哈密顿量非常相似,从而可以定义一个临时温度。我们的研究结果为非厄米系统中的量子纠缠提供了新的见解,并为开发研究非厄米量子多体系统中有限温度特性的新方法奠定了基础。
模拟量子多体系统的动力学是物理学、化学和材料科学以及其他科学技术领域面临的核心挑战。虽然对于传统算法来说,这项任务通常难以完成,但量子电路提供了一种绕过传统瓶颈的方法,即通过“电路化”相关系统的时间演化。然而,当今的量子计算设备只允许对小型且嘈杂的量子电路进行编程,这种情况严重限制了这些设备在实践中的应用类型。因此,电路化程序的量子比特和门成本理所当然地成为决定任何潜在应用可行性的关键因素,而且越来越高效的算法正在不断被设计出来。我们提出了一种在量子电路上进行资源高效的汉密尔顿动力学模拟的新方法,我们认为该方法与最先进的量子模拟算法相比具有某些优势,这些优势直接转化为更短的算法运行时间[1、2](详细比较见第 4 节)。我们通过利用量子时间演化算子在其非对角线元素中的级数展开来实现这一点,其中算子围绕其对角线分量展开 [ 3 – 5 ]。这种展开允许人们有效地积分演化的对角线分量,从而与现有方法相比降低了算法的整体门和量子比特复杂性。在我们的方法中,时间演化被分解为相同的短时间段,每个时间段都使用非对角线级数中的多个项精确近似
“因此,大部分物理学和整个化学的数学理论所必需的基本物理定律已经被完全了解,困难仅在于这些定律的准确应用会导致方程式过于复杂而无法解出。”
1物理与电子工程学院,计算科学中心,四川师范大学,成都610068,中华人民共和国2物理学系2,香港科学技术系,北卡罗来语,九龙,香港,香港,中华人民共和国库洛恩,中华人民共和国统计局3号国际机构和统计局,加拿大41 g。量子计算,滑铁卢大学,滑铁卢N2L 3G1,加拿大安大略省5 Max-planck-institutFürQuantenoptik,Hans-Kopfermann-Str.1,85748 Garching,德国6统计学和精神科学系,沃特洛群岛,沃特洛群岛,沃特洛群岛大学,INSTARIO,INSTARIO,INSTARIO STARION INSTARIO STARION INSTARIO,加拿大大学,加拿大大学。爱荷华州,爱荷华州50011,美国8这些作者对这项工作也同样做出了贡献。
量子相关性是执行各种量子插入和计算任务的里程碑资源,例如密钥分布,密码学,超密集的代码和传送,这些量子在经典上并非经典[1]。在执行这样一项任务时,长期保存和维持相关性至关重要[2]。然而,众所周知,它们在任何量子操作(例如噪声环境中的量子通道)下减少[3]。实际上,基于量子信息和计算科学的新技术的现实应用应用中,称为解相关的相关性丧失是现实世界中的主要障碍[4,5]。因此,寻找控制相关性降低并在信息技术中提供的新方法具有很大的兴趣[5,6]。我们将要处理的两分部分中生活的量子相关性的众所周知的量度是形成(EOF)的纠缠(eof),该纠缠量量化了根据最大纠结对准备某个量子状态所需的最低成本和所需量的量子通信[7-11]。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
侧重于用于量子模拟的通用量子计算,并通过晶格规定的检查,我们引入了相当通用的量子算法,这些算法可以有效地模拟与多个(Bosonic和Fermionic)量子数的相关变化的某些类别的相互作用,该相互作用具有非构成功能系数的量子数。尤其是,我们使用单数值分解技术分析了哈密顿术语的对角线化,并讨论如何在数字化的时间进化运算符中实现已实现的对角线单位。所研究的晶格计理论是1+1个维度的SU(2)仪表理论,该理论与一个交错的费米子的一种味道结合在一起,为此提供了在不同的综合模型中进行完整的量子资源分析。这些算法被证明适用于高维理论以及其他阿贝尔和非阿布尔仪表理论。选择的示例进一步证明了采用有效的理论表述的重要性:显示出,使用循环,弦乐和强体自由度使用明确的计量不变的配方,可以模拟算法,并降低了与基于Angular-Momentum以及Schwinger-Momentum以及Schwinger-boson-boson Boson drefere的标准配方的成本。尽管挖掘仿真不确定,但循环 - 弦 - 弦 - 弦 - 弦 - 弦乐制剂进一步保留了非亚伯仪对称性,而无需昂贵的控制操作。这种理论和算法考虑因素对于量化与自然相关的其他复杂理论可能至关重要。
两种密切相关的危机的严重性,环境和经济危机的严重性也需要以理论上的方式面对;因此,作者提出了一个模型,该模型仅构建了一个生态和经济耦合变量的动力学系统,即乔治库·罗根(Georgescu-Rogen)和赫尔曼·戴利(Herman Daly)的“稳态经济学”的想法。这可能诉诸于广义的伏特拉模型,在汉密尔顿形式主义及其汉密尔顿方程式中翻译,可以使每个变量都可以“结合”每个变量,一种经济,另一种是一种生态学,描述了独特的动力学系统时期的行为。将模型应用于最相关的两个变量最相关的生态经济对,导致模型的“相空间”中的暗示性几何形状:轨迹是包裹“甜甜圈”的曲线,它们的集合是我们正在寻找的“固定状态”。这些轨迹是“准周期性动作”,其特征是两个频率,其值在“小振荡”近似中提供了良好的估计值。在本文中,汉密尔顿方程的解决方案的稳定性来定义一个更一般但更抽象的“固定状态”。使用变量的世界数据时,可以确保模型的全局特征。该模型的一个非常有趣的特征是,使用类似于牛顿动力学的术语给出了可持续性场景的途径。关键字:独特的动力系统,Volterra广义模型,“共轭”哈密顿对,准周期性动作,Lyapunov稳定性,全球固定状态。
抽象的几何形状是在统计中的不同几何形状的应用,在统计中,Fisher-Rao指标在统计歧管上用作Riemannian指标,为参数灵敏度提供了内在特性。在本文中,我们探索了使用非富米系统的Fisher-Rao指标。通过近似非温米特式哈密顿量中的Lindblad Master方程,我们计算了量子几何度量的时间演变。最后,我们举例说明了假想磁场的量子旋转模型,探索了Pt -Ammetric Hamiltonian的能量光谱和几何度量的演化,并讨论在对控制Hamiltonian的条件下,可以消除虚电场的耗散效果,以提高Hamiltonian的估算,以提高Hamiltonian的估算,以提高参数的准确性。