理解非平衡量子动力学的一个有力视角是通过其纠缠内容的时间演化。然而,除了纠缠熵的几个指导原则外,迄今为止,人们对纠缠传播的精细特性知之甚少。在这里,我们从纠缠汉密尔顿量的角度揭示了纠缠演化和信息非平衡传播的特征。我们使用最先进的数值技术结合共形场论研究了原型 Bose-Hubbard 模型的量子猝灭动力学。在达到平衡之前,发现纠缠汉密尔顿量中出现了一个电流算子,这意味着纠缠扩散是由粒子流携带的。在长时间极限下,子系统进入稳定阶段,这由纠缠汉密尔顿量动态收敛到热系综的期望值所证明。重要的是,稳定状态下的纠缠温度与空间无关,这提供了平衡的直观特征。这些发现不仅为平衡统计力学如何在多体动力学中出现提供了重要信息,而且还为从纠缠哈密顿量的角度探索量子动力学增加了一个工具。
现代车辆可以看作是一个复杂的网络物理系统(CPS),其中车辆动力学与软件控制系统相互作用。自适应巡航控制(ACC)和车道保持控制(LKC),特别是半自主和自主驾驶的基础特征。此类系统的安全分析对于实现车辆自治非常重要。确保在这种复杂的CP中的安全性非常具有挑战性,尤其是在多个子系统,非线性,混合动力学和干扰之间存在相互作用的情况下。本文介绍了使用多模式港口港系统对汽车控制系统安全分析的方法。该方法将哈密顿式功能用作安全和不安全状态的能量水平之间的障碍,并采用被动性证明轨迹无法越过这一障碍。该方法应用于由ACC和LKC组成的车辆动力学的安全分析。目标是确保主机不会与铅车相撞,并且不会滑行。使用硬件中的仿真平台实现和评估控制设计。实验结果证明了安全分析方法,包括实施效应(例如离散和量化)的影响。©2019 Elsevier Ltd.保留所有权利。