摘要 - 我们在周期框架上介绍了量子步行中的一种新颖的,完全量子哈希(FQH)功能。我们将确定性的量子计算与单个量子级合并,以替换经典的后处理,从而提高了固有的安全性。此外,我们提出的哈希功能表现出零碰撞率和高可靠性。我们进一步表明,它平均提供> 50%的雪崩,并且对初始条件非常敏感。我们在不同的设置以及现有协议上显示了几个性能指标的比较,以证明其功效。FQH需要最少的量子资源来产生较大的哈希价值,从而为生日攻击提供了安全性。因此,这种创新的方法是一种有效的哈希功能,并通过整合完全量子哈希生成协议为量子加密术的潜在进步奠定了基础。索引术语 - Quantum密码函数·哈希功能。量子步行。碰撞。随机统一矩阵。coe。提示。dqc1。
大多数云服务和分布式应用程序都依赖于哈希算法,这些算法允许动态扩展稳健且高效的哈希表。示例包括 AWS、Google Cloud 和 BitTorrent。一致性和会合哈希是在哈希表调整大小时最小化密钥重新映射的算法。虽然大规模云部署中的内存错误很常见,但这两种算法都不能同时提供效率和稳健性。超维计算是一种新兴的计算模型,具有固有的效率、稳健性,非常适合矢量或硬件加速。我们提出了超维 (HD) 哈希,并表明它具有在大型系统中部署的效率。此外,实际的内存错误水平会导致一致性哈希超过 20% 的不匹配,而 HD 哈希不受影响。
o 当皮尔斯县的 CDC COVID-19 社区级别升至高水平时 — 无论是否接种疫苗,都必须在室内佩戴口罩,未接种疫苗的人员需要每周进行筛查检测才能进入国防部设施 o 当皮尔斯县的 CDC COVID-19 社区级别为中水平时 — 根据 CDC 的建议,无论是否接种疫苗,都无需在室内佩戴口罩,但未接种疫苗的人员需要每周进行筛查检测才能进入国防部设施。 o 当皮尔斯县的 CDC COVID-19 社区级别降至低水平时 — 无论是否接种疫苗,都无需根据 CDC 的建议在室内佩戴口罩,未接种疫苗的人员无需进行筛查检测才能进入国防部设施 o 注意:更新后的戴口罩指南不适用于麦迪根或其他 MTF。就诊时仍需佩戴口罩。无论 CDC COVID-19 社区级别如何,所有人员都可以选择继续佩戴口罩。 o 疾病预防控制中心每周更新当前皮尔斯县 COVID-19 社区水平,因此戴口罩的政策可能会发生变化。
MD4和MD5是1990年代初提出的基本加密哈希功能。MD4由48个步骤组成,并产生一个128位哈希,给出了任意有限大小的信息。MD5是MD4的更安全的64步扩展。MD4和MD5都容易受到实际碰撞攻击的影响,但是倒置它们仍然不现实,即找到给定的消息的消息。在2007年,MD4的39个步骤版本通过减少SAT和应用CDCL求解器以及所谓的Dobbertin的约束而反转。至于MD5,在2012年,其28步版本通过CDCL求解器倒置,用于指定的哈希,而无需添加任何额外的约束。在这项研究中,将立方体构孔(CDCL和LookAhead的组合)应用于MD4和MD5的逐步减少版本。为此,提出了两种算法。第一个通过逐渐修改多伯丁的约束来为MD4产生反问题。第二算法尝试具有不同截止阈值的立方体和固定的固定阶段,以找到具有征服阶段最小运行时估计值的一个。该算法以两种模式运行:(i)估计给定命题布尔公式的硬度; (ii)不完整的SAT解决给定的令人满意的命题布尔公式。虽然第一种算法专注于倒数降级MD4,但第二个算法不是特定区域的,因此适用于各种类别的硬式SAT实例。在这项研究中,首次通过第一种算法和第二算法的估计模式倒入40-、41-,42-和43步MD4。另外,通过第二算法的不完整的SAT求解模式将28步MD5倒入四个哈希。对于其中的三个哈希,这是第一次完成。
虚构的班级群体最近已成为加密研究的焦点:他们的命令仍然难以捉摸。回想一下,具有给定判别的虚构班级组的顺序被称为班级编号,并且据信很难计算出大型判别物,这就是为什么我们可以假设班级组的顺序,即使我们知道歧视性,也未知。假设尚不清楚分解化,RSA组的顺序也未知,但是课程组比RSA组的好处是,对于课程组,对具有未知顺序的新组进行采样更容易,因为可以简单地品尝足够大的负面的,主要的质歧视∆并发布它。对于RSA组,对新组进行采样要难得多得多,因为它需要对模量n = pq进行采样,其中P和Q是两个主要因素,如果您知道这些,则您也知道组顺序。so在RSA组中,对于一个值得信赖的一方,必须采样一个未知订单的组,需要更复杂且计算昂贵的协议,例如安全的多方
最早的基于亚速的加密协议之一是Charles-Goren-Lauter(CGL)哈希函数[16]。此哈希函数利用输入位在超单向椭圆曲线2差异图上生成随机行走,并输出最终顶点的Jinvariant。基于哈希函数安全性的严重问题是在两个给定的超大椭圆曲线之间找到同基因的困难。在各种加密方案中计算异基因的方法包括使用模块化多项式,V´elu的公式,V´elu-SQRT [5]和自由基同基因。这些方法最适合低度的低质体,然后将其链接在一起以产生(平滑)大的同基因。在[14]中引入了椭圆曲线之间的自由基异基因的概念。一个自由基N-发育公式输入由椭圆曲线E和n- torsion点p∈E组成的一对(E,P),并输出一对(E',P'),使得
关于哈希功能算法的比较研究,用于区块链技术PUNKAH YIEN 1,KAMARUDDIN MALIK 1 *,SOFIA NAJWA RAMLI 1 1 1 1教师计算机科学和信息技术,马来西亚大学,Parit Raja,Parit Raja,Batu Pahat,Batu Pahat,86400,Malaysia Doi: https://doi.org/10.30880/aitcs.2024.05.01.002于2024年5月18日收到; 2024年5月22日接受; 2024年8月30日在线上可用:加密货币是使用加密来创建和分发使加密货币成为点对点数字交换系统的货币单位。比特币是一种流行的加密货币,使用哈希算法进行工作证明的共识机制。但是,比特币中有一些有关哈希功能的特定攻击,例如双支出和51%的攻击。因此,本研究论文是为了提高比特币区块链的安全性,对哈希算法进行比较研究。比较是在Java编程中进行的,通过计算哈希速度,以哈希速度重复使用100、500和1000 LOOP,以使用SHA256,KECCAK256和BLAKE2B进行100、500和1000个环的测试数据,以100、500和1000循环重复进行10次。在1000循环实验中,Keccak256比SHA256快33.29%,而Blake2b的速度约为47.18%。根据比较分析,Blake2b的哈希速度是所选哈希算法中最快的。它可以提高区块链对51%攻击和双重支出的安全性。关键字:安全性,哈希,SHA256,KECCAK256,BLAKE2B
abtract。哈希功能是基本的加密原始功能。某些哈希功能试图通过减少已知的严重问题来证明对碰撞和前图攻击的安全性。这些哈希功能通常具有一些允许减少的额外属性。哈希函数是加性或乘法的,使用量子计算机的隐藏子组问题算法容易受到量子攻击的影响。使用量子甲骨文到哈希,我们可以重建哈希函数的内核,这足以找到碰撞和第二次预示。当哈希函数相对于Abelian组中的组操作是加法的时,总会有足够的实现此攻击。我们将具体的攻击示例提交了可证明的哈希功能,包括对⊕线性哈希函数的前攻击和某些乘法同构哈希方案。