摘要:犬特应性皮炎 (cAD) 是一种多因素过敏性疾病,与免疫功能障碍和皮肤屏障异常有关。几种免疫介质在其发病机制中发挥作用。这些分子是由 T 辅助淋巴细胞 (Th) 通过极化为 Th1 和/或 Th2 而激活产生的,这会导致不同的病变模式。急性病变由 Th2 细胞因子轴的激活介导,临床上会诱发红斑和瘙痒。相反,在慢性损伤中,会发生 Th1/Th2 细胞因子的混合免疫反应,导致皮肤色素沉着和苔藓化。临床上了解这些模式和免疫调节剂的作用方式对于对特应性患者进行最佳的临床管理至关重要。在此背景下,本综述讨论了免疫反应和免疫调节药物在患有特应性皮炎的狗中的作用,并提出了一种基于临床表型的治疗方案。根据本综述中显示的证据,使用针对与 cAD 临床表型相关的细胞因子谱的免疫调节药物被认为是适当的。关键词:犬过敏症、炎症性疾病、免疫调节剂。
前启示性(PE)是妊娠20周后发生的产科疾病。它被认为是“伟大的产科综合症”之一,主要有助于孕产妇的发病率和死亡率。PE与一系列免疫疾病有关,包括TH2细胞上的T助手(Th)1的优势以及TH17和T调节细胞(Tregs)的不平衡水平。在怀孕期间,T细胞在参与妊娠并发症(例如PE)的同时,保护胎盘免疫排斥和辅助胚胎植入。促进同种抗原特异性细胞是PE的潜在预防和治疗策略。但是,确保母亲和婴儿的安全至关重要,因为生殖和产科疾病的风险收益比与构成威胁生命的风险的免疫疾病的风险相比显着不同。在这篇综述中,我们系统地总结了T细胞免疫在外周血,生殖组织以及PE患者的母亲狂热界面中的作用。此外,对靶向PE中T细胞免疫的最新治疗方法进行了严格评估。
为控制流行病,我们急需一个能够快速生成多种候选疫苗的“通用”平台。以严重急性呼吸综合征冠状病毒 2 为模型,我们通过 CRISPR 工程改造 T4 噬菌体开发了这样一个平台。通过将各种病毒成分整合到噬菌体纳米颗粒结构的适当区室中,设计了一系列候选疫苗。这些包括基因组中可表达的刺突基因、作为表面装饰的刺突和包膜表位以及包装核心中的核衣壳蛋白。在动物模型中发现,装饰有刺突三聚体的噬菌体是最有效的候选疫苗。在没有任何佐剂的情况下,这种疫苗可刺激强大的免疫反应,包括 T 辅助细胞 1 (TH 1) 和 TH 2 免疫球蛋白 G 亚类,阻断病毒-受体相互作用,中和病毒感染,并提供针对病毒攻击的完全保护。这种新的纳米疫苗设计框架可能允许在未来快速部署针对任何新出现的病原体的有效无佐剂噬菌体疫苗。
我们的免疫系统由先天和适应性免疫系统组成;先天免疫系统可以防止一般威胁和保守的致病序列,而适应性免疫系统则靶向并保留特定病原体的记忆(1)。t细胞是适应性免疫的关键介质,特定驱动细胞免疫,而不是控制体液免疫的B细胞。在功能上,T细胞杀死感染细胞或释放细胞因子在识别出在感染细胞上呈现的外抗原后募集其他免疫细胞(2)。不成熟的T细胞从闻式组织迁移到胸腺,在那里它们成熟到表达独特且功能性的T细胞受体(TCR)的Na€ve T细胞中,使他们能够识别特定的抗原(3)。胸腺也是T细胞与初始CD4/CD8双阳性状态区分为CD4或CD8谱系的情况。CD4ÞT细胞执行辅助功能,而CD8
抽象背景对靶向程序细胞死亡1(PD-1)受体的免疫检查点抑制剂的反应率为复发性或转移性头部和颈部鳞状细胞癌(HNSCC)患者的受体为13%–18%。对肿瘤免疫微环境(时间)的详细理解对于解释和提高该反应率至关重要。hnsccs出现在各种解剖学位置,包括口腔,咽部,喉和口咽。直接比较解剖部位之间免疫浸润的研究很少。由于不同的位置可能会驱动偏差的微环境,因此我们质疑免疫成分在这些HNSCC位点上是否有所不同。方法,我们使用流式细胞术表征了76个新鲜肿瘤标本的时间,并在9个头部和颈部肿瘤样品上进行了单细胞RNA的时间。结果,我们发现患者之间时间的组成有主要差异。比较解剖部位时:源自口腔的肿瘤的T细胞浸润高于其他解剖部位的肿瘤。患者之间的免疫检查点PD-1的肿瘤浸润T-淋巴细胞的百分比呈阳性,而在喉鳞状细胞癌(SCC)中发现的PD-1+ T细胞的最高分数。虽然我们假设肿瘤起源的解剖位点会驱动样品聚类,但我们的数据表明,时间类型更为主导,特别受PD-1的T细胞的比例驱动。此外,与改善总体生存率相关的PD-1+ CD8+ T细胞的高比例很高。使用单细胞RNA - 测序,我们观察到PD-1表达在CD8-ENTPD1组织驻留记忆T细胞/耗尽的T细胞和CD4-CXCL13中最高的PD-1表达和CD4-CXCL13 1型T辅助细胞簇。结论我们发现口腔SCC的T细胞频率最高。我们还观察到PD-1在T细胞上的大量室内异质性,喉SCC中PD-1+ CD4+ T辅助细胞的频率明显更高。在整个队列中,PD-1阳性的CD8+ T细胞的较高比例与改善的总生存期有关。时间内PD-1+ T细胞的分数是否能够为患有头颈癌患者的免疫检查点抑制剂反应预测。
摘要 - 桥本的甲状腺炎(HT)是一种慢性疾病,免疫系统攻击甲状腺。终生持续的自身免疫性疾病,始于导致甲状腺功能障碍的炎症。我们的研究重点关注过程的关键部分:T辅助17(Th17)细胞,因为HT通常集中在其他免疫细胞上。我们的研究表明,TH17和细胞因子IL-17负责该疾病的炎症级联反应。TH17细胞积极主动,导致过度炎症,最终导致HT中的甲状腺组织损伤。这些细胞产生IL-17时是促炎性的,它会募集其他免疫细胞并加剧组织破坏。TH-17与通常负责控制免疫应答的调节性THE之间的平衡在HT中被破坏,从而导致对免疫系统的持续攻击。本文我们的发现强调了将TH-17和IL-17途径作为潜在治疗策略的重要性。当我们转移对这些关注时,我们可能能够开发有助于管理炎症并防止甲状腺损害的治疗方法。
工程大肠杆菌菌株用于生产长的单链DNA Konlin Shen 1,Jake J.洪水2,Zhuizi Zhang 1,Alvin HA 4,5,6,Brian R. Shy 4,5,6,John E.美国加利福尼亚州伯克利的国家实验室4美国加利福尼亚大学旧金山分校,美国加利福尼亚州旧金山的实验室医学系。5 Gladstone-UCSF基因组免疫学研究所,美国加利福尼亚州旧金山。6加利福尼亚大学旧金山分校的医学系,美国加利福尼亚州旧金山。 对应证:shawn.douglas@ucsf.edu抽象的长单链DNA(SSDNA)是一种多功能分子试剂,其应用包括RNA引导的基因组工程和DNA纳米技术,但其生产通常是资源密集的。 我们采用了一种新的方法,利用工程化的大肠杆菌“助手”菌株和吞噬系统,将长ssDNA的产生简化为直接转化和纯化程序。 我们的方法通过将M13MP18基因直接整合到大肠杆菌染色体中,从而消除了对辅助质粒及其相关污染的需求。 ,我们实现了504至20,724个核苷酸的ssDNA长度,碱性赖氨酸溶液纯化后滴度最高为250 µg/l。 通过将其在原代T细胞基因组修饰和DNA折纸折叠中的应用中,我们的系统的功效得到了证实。6加利福尼亚大学旧金山分校的医学系,美国加利福尼亚州旧金山。对应证:shawn.douglas@ucsf.edu抽象的长单链DNA(SSDNA)是一种多功能分子试剂,其应用包括RNA引导的基因组工程和DNA纳米技术,但其生产通常是资源密集的。我们采用了一种新的方法,利用工程化的大肠杆菌“助手”菌株和吞噬系统,将长ssDNA的产生简化为直接转化和纯化程序。我们的方法通过将M13MP18基因直接整合到大肠杆菌染色体中,从而消除了对辅助质粒及其相关污染的需求。,我们实现了504至20,724个核苷酸的ssDNA长度,碱性赖氨酸溶液纯化后滴度最高为250 µg/l。通过将其在原代T细胞基因组修饰和DNA折纸折叠中的应用中,我们的系统的功效得到了证实。我们的方法的可靠性,可伸缩性和易度性有望解锁需要大量长ssDNA的新实验应用。引言单链DNA(ssDNA)在生物技术中起着至关重要的作用,尤其是在DNA纳米技术和基因编辑1,2中。长ssDNA的合成超过5000个核苷酸(NT)是具有挑战性的,并且明显的障碍可以阻止可扩展产生。通过磷酰胺化学的直接化学合成仅限于由于掺入误差和脱尿3的长度300-400 nt。为了获得更长的ssDNA链,电流实践采用双链DNA(dsDNA)作为模板。例如,不对称PCR可以在长度4中产生高达15,000 nt的ssDNA。其他方法包括使用差异修饰的引物进行PCR扩增:用于lambda外核酶消化5的磷酸化和未磷酸化,或生物素基化和非生物素化和非生物素化,用于链霉亲和素珠分离6-在孤立的Ssdna strands隔离时进行抗性。然而,这些技术通常每50-微晶(µL)反应产生小于1微克(µg)的ssDNA,从而使毫克的生产量成本昂贵,并且由于广泛的劳动力和高度试剂的消耗而效率低下,因此强调了更多可扩展和经济的SSDNA生产方法的必要性。
简介全基因组关联研究已发现许多与自身免疫性疾病风险相关的遗传变异。据报道,编码 B 淋巴细胞诱导成熟蛋白 1 (BLIMP1) 的正调节结构域 1 ( PRDM1 ) 基因座的突变与克罗恩病 (CD) 有关。此外,具有 PRDM1 变异的 CD 患者的外周血淋巴细胞 (PBL) 的特征是 T 细胞增殖和 IFN- γ 分泌增加。具有常见 CD 风险相关纯合变异的 CD 患者回肠活检中 PRDM1 的表达低于野生型等位基因纯合的个体 (1)。此外,两项独立的动物研究表明,T 细胞中缺乏 Blimp-1 会增加效应/记忆 T 细胞在外周淋巴器官中的积累并促进自身免疫性结肠炎的发展 (2, 3),表明其在自身免疫性疾病中发挥抑制作用。此外,我们证明 T 细胞特异性 Blimp-1 缺陷会增加 NOD 小鼠对自身免疫性脑脊髓炎 (4) 的易感性,并导致自发性结肠炎 (5)。此外,T 辅助细胞 1 (Th1) 的表达
I. 简介 AAVpro CRISPR/SaCas9 系统用于制备腺相关病毒 (AAV) 载体,以将编码 CRISPR/SaCas9 介导的基因组编辑所需成分的基因 [即单向导 RNA (sgRNA) 和 SaCas9 核酸酶] 递送至哺乳动物细胞。这种基于 AAV 的单载体系统使用来自金黄色葡萄球菌的 Cas9 (SaCas9),其编辑效果与更常用的化脓性链球菌 Cas9 (SpCas9) 相似,但短约 1 kb。通过使用较小的 SaCas9,可以将 SaCas9 和 sgRNA 序列装入单个载体中,并在体外和体内对多种哺乳动物细胞实现有效的基因组修饰。 AAVpro CRISPR/SaCas9 无辅助系统 (AAV2)(货号 632619)是一个完整的系统,包含用于构建定制设计的 sgRNA 表达质粒和制备 AAV 颗粒的试剂。AAVpro CRISPR/SaCas9 载体系统(货号 632618)包含与货号 632619 相同的组件(包装系统除外);详细信息在第 II 部分“组件列表”中列出。
摘要 嗜酸性胃肠道疾病的认识日益加深,这揭示了当前治疗(主要基于饮食调整和皮质类固醇)的局限性,包括难治性、高复发率和需要长期治疗。主要针对嗜酸性食管炎 (EoE) 的研究工作揭示了导致这些疾病的基本病理生理机制,这些机制与特应性表现有一些相似之处,并且嗜酸性胃肠炎 (EGE) 和嗜酸性结肠炎 (EC) 也具有共同点。目前正在对 EoE 进行评估的新型靶向疗法,其中一些是从支气管哮喘和特应性皮炎中引入的。最有希望的是单克隆抗体,包括针对白细胞介素 (IL)-13 (cendakimab) 和 IL-4 (dupilumab) 的单克隆抗体,目前正在进行 3 期试验。抗整合素疗法(维多珠单抗)和 Siglec-8 阻滞剂(安托利马)在 EGE 中的潜力也十分可观。本文回顾了嗜酸性粒细胞性肠道疾病的非生物疗法,包括阻止 Janus 激酶 (JAK)-信号转导和转录激活因子 (STAT) 和 T 辅助细胞 2 细胞 (CRTH2) 信号通路上表达的趋化因子受体的激活,以及嗜酸性粒细胞性肠道疾病中值得研究的其他潜在靶点。