摘要:Callan–Giddings–Harvey–Strominger 黑洞的光谱和温度与平坦时空中的加速反射边界条件相对应。beta 系数与移动镜模型相同,其中加速度在实验室时间内呈指数增长。黑洞中心由完全反射的规律性条件建模,该条件使场模式发生红移,这是粒子产生的源头。除了计算能量通量外,我们还找到了与黑洞质量和引力模拟系统中的宇宙常数相关的相应移动镜参数。推广到任何镜像轨迹,我们推导出自力(洛伦兹-亚伯拉罕-狄拉克),一致地将其和拉莫尔功率与纠缠熵联系起来,从而引发了对信息流加速辐射的解释。将镜面自力和辐射功率施加到特定的CGHS黑洞模拟动镜上,揭示了渐近热平衡过程中视界信息的物理特性。
摘要:黑洞信息之谜源于广义相对论与量子理论对黑洞辐射性质的结论存在差异。根据霍金最初的论证,辐射是热的,因此其熵会随着黑洞的蒸发而单调增加。相反,由于量子理论中时间演化的可逆性,辐射熵应该在一定时间后开始减小,正如佩奇曲线所预测的那样。基于复制技巧的新计算证实了这种减小,并揭示了其几何起源:复制品之间形成的时空虫洞。在这里,我们从量子信息论的角度分析了这些结论与霍金最初结论之间的差异,特别是使用了量子德菲内蒂定理。该定理意味着存在额外的信息 W,它既不是黑洞的一部分,也不是辐射的一部分,而是起着参考的作用。通过复制技巧获得的熵可以被识别为以参考 W 为条件的辐射的熵 S ( R | W ),而霍金的原始结果对应于非条件熵 S ( R )。熵 S ( R | W ) 在数学上是集合平均值,在对 N 个独立准备的黑洞进行实验时,它获得了操作意义:对于较大的 N ,它等于它们联合辐射的归一化熵 S ( R 1 · · · RN ) / N 。这个熵和 S ( R ) 之间的差异意味着黑洞是相关的。因此,复制虫洞可以被解释为这种相关性的几何表示。我们的结果还表明广泛使用的随机幺正模型可以扩展到多黑洞,我们通过非平凡检验支持了这一点。
摘要:本文论证了量子引力中不存在全局对称性与黑洞信息问题的幺正解之间存在密切联系。特别是,我们展示了如何利用最近对蒸发黑洞 Page 曲线计算的基本要素,将最近反对 AdS/CFT 对应之外的全局对称性的论点推广到更现实的量子引力理论。我们还给出了几个低维量子引力理论的例子,这些理论在通常意义上没有黑洞信息问题的幺正解,因此可以而且确实具有全局对称性。受此讨论的启发,我们推测在某种意义上,欧几里得量子引力等同于全息术。
经常说,黑洞没有什么可以出现的(参见sec。33.1参考。[1])。但是,正如我们先前所说的那样[2],此陈述可能并不完全正确。信息不是通过粒子来驱动的,而是通过量子散射过程中的动量转移。实际上,信息传输过程不是基于更快的信号交换,而是基于虚拟光子交换。这导致了两个最初未进入的带电粒子之间的动态纠缠,这些粒子位于黑洞地平线的不同侧面。依靠这种动量转移的Gedanken-实验[2],没有量子散射),原则上可以从黑洞内部到黑孔地平线外部的元素消息(位值“ 1”或“ 0”)的传输。
需要λ<0显然是过于限制的假设,即我们希望适用于宇宙的想法,但另一方面,我们很快会看到某种非平凡的假设是必要的:至少在较低的维度下,确实存在与全球对称性的量子引力理论!
1994 年,Susskind 和 Uglum 提出,有可能从弦理论中推导出贝肯斯坦-霍金熵 A / 4 GN。在本文中,我们解释了这一论点的概念基础,同时阐明了它与诱导引力和 ER = EPR 的关系。根据 Tseytlin 的离壳计算,我们明确地从 α ′ 的领先阶球面图中推导出经典闭弦有效作用。然后,我们展示了如何利用这一点从圆锥流形上的 NLSM 的 RG 流中获得黑洞熵。 (我们还简要讨论了 Susskind 和 Uglum 提出的更成问题的“开弦图景”,其中弦在视界结束。)然后,我们将这些离壳结果与使用壳上 C / ZN 背景的竞争对手“轨道折叠复制技巧”进行比较,后者不考虑领先阶贝肯斯坦-霍金熵——除非允许快子在轨道折叠上凝聚。探讨了与 ER = EPR 猜想的可能联系。最后,我们讨论了各种扩展的前景,包括在 AdS 本体中推导出全息纠缠熵的前景。
金红石二氧化锗 (r-GeO 2 ) 是最近预测的一种超宽带隙半导体,在高功率电子器件中具有潜在的应用,其中载流子迁移率是控制器件效率的重要材料参数。我们应用基于密度泛函和密度泛函微扰理论的第一性原理计算来研究 r-GeO 2 中的载流子-声子耦合,并预测其声子限制的电子和空穴迁移率随温度和晶体取向的变化。计算出的 300 K 下的载流子迁移率为 l elec ; ? ~ c = 244 cm 2 V 1 s 1 ,l elec ; k ~ c = 377 cm 2 V 1 s 1 ,l hole ; ? ~ c = 27 cm 2 V 1 s 1 ,和 l hole ; k ~ c = 29 cm 2 V 1 s 1 。室温下,载流子散射以低频极性光学声子模式为主。n 型 r-GeO 2 的预测 Baliga 性能系数超过了 Si、SiC、GaN 和 b -Ga 2 O 3 等几种现有半导体,证明了其在高功率电子设备中的卓越性能。
摘要。由于无序量子点的强轨道量子化,在标准 p 型硅晶体管中可以实现单空穴传输和自旋检测。通过使用充当伪栅极的阱,我们发现了表现出泡利自旋阻塞的双量子点系统的形成,并研究了漏电流的磁场依赖性。这使得可以确定空穴自旋状态控制的关键属性,其中我们计算出隧道耦合 tc 为 57 µ eV,短自旋轨道长度 l SO 为 250 nm。使用无序量子点时,界面处表现出的强自旋轨道相互作用支持电场介导控制。这些结果进一步激励我们,可以使用易于扩展的平台(例如行业标准硅技术)来研究对量子信息处理有用的相互作用。
时间反演性质与量子力学中蕴含的幺正理论相吻合,这一结果揭示了广义相对论与量子力学的不相容性,并导致了“信息悖论”。黑洞信息悖论已被列为本世纪十大物理难题之一,但物理学家们始终坚持信息永远不会丢失。二十多年后,Parikh和Wilczek建议将霍金辐射视为量子隧穿效应,并认为势垒由发射粒子自身的能量决定,因此粒子从黑洞辐射时满足能量守恒。他们用这种方法计算了粒子的修正辐射光谱
我们试图研究解决黑洞信息悖论的本体论方面。我们对这一悖论的解决产生了几个现在对我们理解量子力学至关重要的概念,这些概念指出所有信息都是守恒的,即使是在量子层面上。如果量子信息是守恒的,永远不会被抹去或摧毁,那么这表明所有信息至少在理论上、最终都是可以从宇宙的事件视界中检索和了解的。从本体论上讲,这支持了宇宙中所有信息的储存库因此必须存在的论点。在此,我们追溯了这一争论的步骤,并得出结论,我们对宇宙的理解指向一个无所不知的实体的存在。