a b s t r a c t我们通过进行轴心对称辐射 - 磁性水力动力学模拟了70 M⊙星的重力崩溃,该轴向辐射 - 磁性水力动力学模拟了70 M⊙恒星具有两分矩的多矩中准中性相关性,从而,在完全相对于一般性相关的情况下,通过进行70 M⊙星的重力崩溃,从而对黑洞(BH)形成及其随后的爆炸性活性的影响进行了研究,从而对黑洞(BH)形成(BH)形成及其随后的爆炸活性的影响。由于其密集的恒星结构,即使强烈磁化模型在BH形成之前经历了所谓的磁爆炸,所有模型也无法成为最终的BH形成。在强磁模型中观察到的一个有趣的现象是在BH后形成中形成了相对论的射流。相对论射流是强力磁场和低密度材料与BH相结合的结果。射流进一步增强了爆炸能量,超过了10 52 ERG,在冲击之前,它远远超过了重力O V ER侧面。我们的自以为是的超新星模型表明,在超新星祖细胞的高质量端旋转磁化的巨大恒星可能是Hypernova和长伽马射线爆发祖细胞的潜在候选者。
对监视特定区域的无线传感器网络的需求不断增长,促使人们对随着时间的推移维持覆盖率进行了广泛的研究。对此目标的主要威胁是由随机节点部署或失败引起的覆盖漏洞。本研究提出了一种基于智能的算法,以检测和治愈覆盖孔。群的群依赖于局部和相对信息,以响应检测到的孔,并将潜在的磁场导航到最接近的孔。代理将其看法量化以有效分散,从不同方向接近孔以加速愈合。基于几何标准,群体在沿孔边界的本地最佳位置部署,同时防止冗余部署。代理部署更新了潜在的领域,引导其余的群体朝着未弄脏的区域,并确保对新洞的动态检测和跟踪,甚至在地区边界附近。实验研究表明,与最先进的溶液相比,覆盖范围较高,显示出良好的可扩展性和对不同孔尺寸,形状和多重性的灵活性。此外,它对代理商的看法及其失败的腐败表现出很高的鲁棒性,同时有效地管理电池水平。
1 印度理工学院巴特那分校机械工程系,巴特那-801103,印度;jitesh4u89@gmail.com 2 布达佩斯技术与经济大学制造科学与工程系,匈牙利布达佩斯 H-1111;szalay@manuf.bme.hu 3 伦敦帝国理工学院机械工程系,英国伦敦 SW7 2AZ Exhibition Rd.;m.mia19@imperial.ac.uk 4 山东大学机械工程学院高效清洁机械制造教育部重点实验室,济南 250100,中国;munishguptanit@gmail.com (M.K.G.); ssinghua@sdu.edu.cn (Q.S.)5 奥波莱理工大学机械工程学院,76 Proszkowska St., 45-758 Opole,波兰;g.krolczyk@po.opole.pl (G.K.);r.chudy@po.edu.pl (R.C.)6 南乌拉尔国立大学自动化机械工程系,列宁大街。76,车里雅宾斯克 454080,俄罗斯;alich74@rambler.ru (V.A.P.); danil_u@rambler.ru (D.Y.P.)* 通讯地址:kpatra@iitp.ac.in;电话: + 91-6123028012
在这种情况下,本已脆弱的经济从今年年底开始遭受轻微衰退。实际 GDP 从峰值下降到谷底下降了近 0.5 个百分点,就业岗位减少了近 100 万个,失业率从 3.4% 上升到接近 5% 的峰值(见图 5)。金融市场抛售但趋于稳定,因为投资者对立法者迅速改变方向的决定感到欣慰。尽管全球投资者继续要求美国国债利息增加几个基点,以补偿立法者未来可能再次突破债务上限的重大风险,但对经济的长期影响微不足道。即使数万亿美元的美国国债利息增加几个基点,也会给纳税人带来巨大的成本。如果全球投资者不再认为美国国债是无风险的,那么美国的未来几代人将付出高昂的经济代价。
与其他金属和复合材料相比,铝具有制造工艺简单、耐腐蚀、重量轻和成本低等优点[7]。设计飞机结构的重要参数包括抗疲劳性、密度、断裂韧性、强度和耐腐蚀性[7]。此外,在静态重量下受到拉伸时,上侧会产生压缩载荷,而下侧则相反;因此,在飞行过程中需要仔细优化拉伸和压缩强度[7]。因此,铝作为最轻的金属,可以轻松取代其他金属并承受由于飞机大型化而增加的机翼压力载荷[8]。在这方面,航空航天工业使用不同类型的铝合金,其中一些在表2中给出。然而,常见的类别大多来自2xxx和7xxx系列[9]。2000系列合金具有良好的抗疲劳裂纹扩展能力并拥有卓越的损伤容限。因此,它们通常用于飞机的机身蒙皮和下机翼,其中断裂韧性(即抗裂纹扩展)是一个重要的设计参数 [6] 。 Al2024-T3 是机身结构中最常用的 2000 系列合金 [10] 。 7000 系列通常用于上机翼蒙皮,其中强度是主要的设计因素 [6] 。 Al7075-T6 是
焊点的可靠性和质量可能会受到焊料材料的特性及其对 PCB 孔中熔融焊料的填充的影响。含铅焊料材料具有危险性且不环保。欧盟《有害物质限制法》禁止使用某些材料元素 [3,4]。因此,在电子封装组件的焊接应用中引入了无铅焊料材料。此外,氮气的使用可以提高制造业中使用无铅焊料的性能 [4]。但是,由于熔化无铅焊料需要更高的温度,无铅焊料中银含量高于 2% 会因热膨胀系数 (CTE) 高度不匹配而在组装中引起应力 [5]。在这种情况下,激光焊接可以通过控制激光功率和激光束持续时间来解决这个问题,以防止焊料不必要地长时间暴露在热量中。
半导体量子点中的旋转是有希望的局部量子记忆,可以产生偏振化编码的光子簇状态,如开创性的Lindner和Rudolph方案[1]。然而,利用光学转变的极化程度受到共鸣激发方案的阻碍,这些方案被广泛用于获得高光子不明显。在这里我们表明,声子辅助激发(一种保持高度可区分性的方案)也允许完全利用极化的选择性光学转变来初始化并测量单个自旋状态。我们在低横向磁场中访问孔自旋系统的相干性,并在激发态的辐射发射过程或量子点基态下直接监测自旋倾向。我们报告的旋转状态检测功能为94。7±0。由光学选择规则和25±5 ns孔旋转相干时间授予的2%,证明了该方案和系统具有以十二个光子为单位的线性簇状态的潜力。
研究量子参考系 (QRF) 的动机是考虑我们在描述物理系统时明确或隐含使用的参考系的量子特性。与经典参考系一样,QRF 可用于相对地定义时间、位置、动量和自旋等物理量。与其经典类似物不同,它相对化了量子系统的叠加和纠缠概念。在这里,我们通过将其追溯到叠加中不同分支之间如何识别配置或位置的问题,为叠加和纠缠的框架依赖性提供了一种新颖的解释。我们表明,在存在对称性的情况下,系统在分支之间是处于“相同”还是“不同”的配置取决于 QRF 的选择。因此,相同性和差异性——以及因此产生的叠加和纠缠——失去了绝对意义。我们将这些想法应用到叠加半经典时空的背景下,并使用四个标量场的巧合来构建不同分支中时空点之间的比较图。这使我们能够确定给定事件是位于叠加时空中的“相同”点还是“不同”点。由于此功能取决于 QRF 的选择,我们认为事件的定位不应被视为事件的固有属性。这缓解了之前提出的担忧,即 QRF 变化可能会对干涉实验产生经验后果,例如 Bose 等人 -Marletto-Vedral 的提议。此外,它意味着在量子控制因果序的平坦和弯曲时空实现中,事件的数量相等。我们以“量子空洞论证”作为爱因斯坦著名空洞论证的量子背景的概括,认为在量子对称性存在的情况下,不仅时空点,而且它们的识别和叠加流形中事件的定位都失去了绝对的物理意义。
我们研究抗 - de Seitter(ADS)黑色壳(也称为Ads Black Bubbles)的电磁和重力特性 - 一类量子重力动机的黑洞模拟物,在经典限制中被描述为物质的超级壳壳。我们发现它们的电磁特性与黑洞非常相似。然后,我们讨论这些物体与黑洞可区分的程度,包括黑色壳模型内的内在兴趣,以及作为外来紧凑型物体(ECOS)其他类似努力的指南。我们研究光子环和透镜带特性,与非常大的基线干涉法(VLBI)观测值有关,以及引力波可观测值 - Eikonal极限中的准模式和非静态潮汐壳的静态潮汐壳(与正在进行和即将来临的Gravitation Gravitation Waver toughational Wave观测)相关。
摘要:二维共价有机框架(2D COF)含有杂型琴,从理论上鉴定为具有可调的,dirac-cone的带状结构的半导体,预计可为下一代弹性电子的高电荷运输能力提供理想的高电荷机动性。但是,这些材料的批量合成很少,现有的合成方法提供了对网络纯度和形态的有限控制。在这里,我们报告了苯甲酮 - 伊米氨酸保护的氮基因(OTPA)(OTPA)和苯二噻吩二醛(BDT)之间的转介反应,该苯二醛(BDT)提供了一个新的半导体COF网络OTPA-BDT。将COF作为多晶粉和具有控制晶体方向的薄膜。暴露于适当的P型掺杂剂Tris(4-溴苯基)六氯乙酸苯甲酸苯二氧化苯甲酸酯后,将氮化基因淋巴结很容易被氧化为稳定的自由基阳离子,此后,网络的结晶度和方向得以维持。面向孔掺杂的OTPA-BDT COF膜表现出高达1.2×10 –1 s cm –1的电导率,这是迄今为止据报道的最高报告的亚胺连接2D COF。