经常说,黑洞没有什么可以出现的(参见sec。33.1参考。[1])。但是,正如我们先前所说的那样[2],此陈述可能并不完全正确。信息不是通过粒子来驱动的,而是通过量子散射过程中的动量转移。实际上,信息传输过程不是基于更快的信号交换,而是基于虚拟光子交换。这导致了两个最初未进入的带电粒子之间的动态纠缠,这些粒子位于黑洞地平线的不同侧面。依靠这种动量转移的Gedanken-实验[2],没有量子散射),原则上可以从黑洞内部到黑孔地平线外部的元素消息(位值“ 1”或“ 0”)的传输。
我们研究高度激发量子态的相对熵。首先,我们从 Wishart 集合中抽取状态,并开发出一种大 N 图解技术来计算相对熵。该解决方案以基本函数的形式精确表示。我们将分析结果与小 N 数值进行比较,发现它们完全一致。此外,随机矩阵理论结果与混沌多体本征态的行为精确匹配,这是本征态热化的表现。我们将这种形式应用于 AdS = CFT 对应,其中相对熵测量不同黑洞微态之间的可区分性。我们发现,即使观察者对量子态的访问量任意小,黑洞微态也是可区分的,尽管这种可区分性在牛顿常数中非微扰地小。最后,我们在子系统本征态热化假设 (SETH) 的背景下解释这些结果,得出结论,全息系统服从 SETH,直到子系统达到整个系统的一半大小。
S. W. Hawking,“重力崩溃中可预测性的分解”,物理。修订版D 14,2460(1976)在经典的动力黑洞背景中使用了量子场理论,以争辩说,信息丢失到绝对事件的地平线中,无法消失,因此当黑洞蒸发消失时,信息从宇宙中蒸发而丢失,从而导致了从初始纯量子状态变化,从最初的纯量状态到热旋转孔径的混合状态。这肯定是一个人从局部量子场理论中获得的,并在确定的度量标准中,其信号无法逃脱(因为它们必须比光速比光速更快,而在局部量子场理论中不可能),而层次后面的区域却落在了空间奇异的速度上。有人可能会说信息仍在黑洞内,但是如果黑洞完全蒸发,信息消失后,信息将完全从宇宙中消失。
读到这里,读者可能会抱怨,如果引力中的量子效应只在黑洞奇点附近才重要,那么对于生活在黑洞外进行实验的观察者来说,它们可能没有任何意义。然而,斯蒂芬·霍金在 1974 年宣布了他的研究结果 [7, 8],震惊了物理学界。他发现,黑洞视界附近的量子效应会导致事件视界的半径不断减小并最终消失。正如我们上面提到的,黑洞的视界半径是宏观尺寸(对于质量等于地球质量的黑洞,视界半径为 9 毫米,对于质量等于太阳质量的黑洞,视界半径为 3 千米),我们完全理解这些宏观长度尺度上的物理定律。这就是为什么霍金的结果对事件视界的确切性质不敏感。
摘要:我们研究了2×2元素量子点阵列中单螺旋状态和多霍尔方向上的孔自旋松弛。我们发现,对于具有单孔和五孔职业的量子点,旋转松弛时间t 1高至32和1.2 ms,为孔量子点设定了自旋松弛时间的基准。此外,我们通过测量每个值对栅极电压的谐振频率依赖性来研究量子通讯性和电场灵敏度。,我们可以为单台和多孔量子位调整较大范围内的谐振频率,同时发现共振频率仅弱依赖相邻门。尤其是,五孔值谐振频率对其相应的柱塞门敏感20倍以上。出色的单个量子可调性和长期的自旋松弛时间在锗中有望在茂密的二维量子点阵列中,可寻求和高实现旋转矩阵,以获取大规模量子信息。关键字:锗,量子点,旋转放松,Qubits Q
在1976年引入信息损失问题的四十年中,这是一个目前的想法,现在,在2020年,它已经解决了一个方面。这方面涉及通过在最终辐射状态下执行的操作从黑洞内部恢复初始插入物质状态。Arriving at the solution involved integrating key historical and recent works such as Page's 1993 study of entropies in black hole evaporation, Ryu-Takayanagi's 2006 holographic area relation, Faulkner, Lewkowycz and Maldacena's and Engelhardt and Wall's extensions to the area relations in 2013 and 2015 respec- tively, Penington's work on entanglement wedges in 2019 and Almheiri,Mahajan,Maldacena和Zhao于2019年在岛上的猜想中的工作。本论文回顾了这些选定的作品。
摘要:量子力学与广义相对论之间存在着不可调和的矛盾,导致了黑洞信息悖论和防火墙悖论。本文探讨了这两个悖论产生的原因,并提出了一些可能的解决办法。信息悖论是想探究信息落入黑洞后是否真的会丢失,本文简要介绍了马尔达西那对偶原理、黑洞互补原理以及其他解决该悖论的模型。防火墙悖论是想探究穿过黑洞视界的物体是否会被防火墙摧毁,计算复杂性的引入和ER=EPR模型可能有助于解决这一悖论。此外,如果防火墙真的存在,引力波撞击防火墙的反弹可能有助于探测到它。总的来说,黑洞悖论的解决可能为我们统一量子力学和广义相对论提供一种可能的途径。
1。鹰辐射和黑洞熵黑洞是神秘的物体。在爱因斯坦的一般相对论理论(gr)中,它们被描述为时空的区域,其中什么都没有,甚至没有光,都无法逃脱。有强有力的证据表明这种物体存在于自然界中。一个例子是质量m≈4的银河黑洞(SGR A ∗)。3×10 6m⊙[1]。另一个例子是事件水平望远镜(EHT)观察到的星系M87中心(称为M87 ∗)的超质量黑洞[2];它的质量为m≈6。5×10 9m⊙。可以通过X射线发射(如V404 Cygni,具有m≈9m⊙)或引力波的发射(如Ligo Collocorate [3])。对黑洞的观察可以深入了解这些物体及其周围环境的天体物理学,但也可以提供约束基本物理的手段(参见例如[4])。自1970年代初以来就一直知道黑洞遵守与热力学定律具有惊人类比的法律。这些类比在表1中列出了。可以得出具有额外压力项的黑洞力学的第一定律。压力来自宇宙常数,为p = −λ /8πg。这导致了第一定律中的额外项v d p,并将M解释为焓而不是能量[5]。但是,我们不会在这里考虑这一点。因为MC 2扮演了能量的作用,因此我们可以将术语d e = t d s与d m =κ8πgDa进行比较,其中κ是表面重力。由于根据表κ与温度t相比,我们可以暂时识别
最低朗道能级效应 W. Pan、W. Kang、M. P. Lilly、J. L. Reno、K. W. Baldwin、K. W. West、L. N. Pfeiffer 和 D. C.