摘要 本文在航空合金孔加工的背景下对传统钻孔和螺旋铣削进行了比较研究,阐述了这两种不同的加工工艺对不同航空合金的微观结构和疲劳性能的影响。结果表明,与螺旋铣削工艺相比,两种合金在传统钻孔下都会经历更严重的表面/亚表面塑性变形。对于这两种合金,与传统钻孔相比,螺旋铣削可延长其试样疲劳寿命。在所有加工条件下,Al 2024-T3 的疲劳寿命明显长于 Ti-6Al-4V。使用冷却液通常可减少表面损伤,并可提高加工合金的疲劳性能。此外,还研究了加工表面粗糙度,以进一步阐述不同加工工艺的影响。
Springer Cham Heidelberg New York Dordrecht London © 作者 2015 本作品受版权保护。出版商保留所有权利,无论涉及全部或部分材料,特别是翻译、重印、重复使用插图、朗诵、广播、以缩微胶片或任何其他物理方式复制、传输或信息存储和检索、电子改编、计算机软件或现在已知或今后开发的类似或不同的方法的权利。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等并不意味着(即使没有具体声明)这些名称不受相关保护法律和法规的约束,因此可以自由使用。出版商、作者和编辑可以放心地认为,本书中的建议和信息在出版之日是真实准确的。出版商、作者或编辑均不对本文包含的材料或可能出现的任何错误或遗漏提供明示或暗示的保证。
本章的标题和许多思想都来自一本开创性的著作,即威廉·肖克利的《半导体中的电子和空穴》[1],该书出版于 1950 年,即晶体管发明两年后。1956 年,肖克利与布拉顿和巴丁共同因发明晶体管而获得诺贝尔物理学奖(图 1-1)。多年来,人们发现本章和下一章中介绍的材料对于深入了解各种半导体器件非常有用且必不可少。掌握这里介绍的术语、概念和模型将使您不仅能够理解当今存在的许多半导体器件,而且还能理解未来将发明的更多半导体器件。它还将使您能够与半导体器件领域的其他人进行知识交流。
)> 太空中可能布满“黑洞”。这是在克利夫兰举行的美国科学促进会会议上,天文学家和物理学家提出的,他们是所谓退化恒星方面的专家。退化恒星不是道德低下的好莱坞类型。它们是垂死的恒星,或白矮星,占天空中所有恒星的 10% 左右。它们发出的微弱光线来自生命最后阶段留下的少量热量。目前尚不清楚恒星是如何悄然衰落成为白矮星的。退化恒星由密集的电子和原子核或原子核组成。它们的密度如此之大,以至于一小撮物质就重达一吨。理论上预测,一些这样的恒星的密度为每小撮一百万吨。当这种情况发生时,恒星基本上是由中子和奇异粒子组成的。由于退化恒星的密度如此之大,其引力场非常强。根据爱因斯坦的广义相对论,当一颗退化恒星的质量增加时,它会突然坍缩,恒星强大的引力场会向自身收缩,从而形成宇宙中的“黑洞”。
如果我们看不到它们,我们怎么知道它们就在那里?黑洞——顾名思义——是无法直接看到的。找到黑洞的唯一方法是寻找它对周围空间中其他物体的影响。观察气体喷流、辐射、快速旋转的物体和其他方法可用于间接探测黑洞的位置。天文学家已经通过这种方式观察到了我们自己星系中数十个黑洞的证据。研究黑洞的科学家专注于观察周围空间中其他物体如何受到影响。定位黑洞的第一种方法是观察双星系统。在这些系统中,两颗恒星相互绕行,由于恒星之间的引力,它们的运动方式通常可以预测。科学家们知道,如果他们看到一颗恒星像附近有一个巨大的物体一样移动,但没有其他恒星的迹象,那么它的隐形伴星可能就是黑洞。科学家还意识到,如果双星系统中的不可见物体是黑洞,那么它会产生巨大的引力。可见恒星的气体(或任何附近的气体和尘埃)会以极高的速度绕黑洞旋转,然后消失在黑洞中。这一过程会产生巨大的热量和 X 射线辐射,可以通过观测检测到。20 世纪 70 年代,科学家对伽马射线爆发产生了浓厚的兴趣,将其作为探测黑洞的一种方式。一种假设认为,由正常恒星和黑洞组成的双星系统在黑洞最终吞噬其伴星的所有物质时会产生伽马射线爆发。另一种被广泛接受的理论认为,黑洞或中子星碰撞时会释放伽马射线。当巨星坍缩并形成黑洞时,也可能释放伽马射线爆发