通过气相色谱 - 质谱法(GC-MS)分析筛选了猫型叶绿素的叶,根和茎的植物材料。乙醇提取物是由C. procera所有部分的Soxhlet设备制备的。本研究旨在确定叶子,根和茎皮的植物化学筛选,抗菌和抗氧化特性。植物化学筛选,揭示了大多数次级代谢产物的存在,例如黄烷醇,苯酚,生物碱,皂苷,皂苷,叶中的糖苷,而叶片中的糖苷除糖苷外,而碱和皂苷不存在于根和糖os剂中。从抗菌结果中,对大肠杆菌的休假提取物的最高抑制区为(14mm),最低抑制区为(2mm),这是葡萄球叶叶的最高和最低抑制区。a是(14mm和4mm)的抑制区和蜡状杆菌叶片抑制的最低区域是(14mm)和(4mm)。在叶提取物中,曲霉的抑制作用最高的区域为12mm,叶片中白色念珠菌的白色念珠菌为14mm。叶子的F3分数的FTIR证实了烷烃,烷烃,羟基,胺和酰胺的存在,这些存在显示
甲烷(CH 4)是一种温室气体,其二氧化碳(CO 2)的气候影响约为30倍。短期气候影响(在20年内)甚至比CO 2高达86倍。在数年的时间内,天然化学反应将甲烷氧化为CO 2。CH 4在空气中的最大温室效应约为12。4年(Ehhalt等人2018; Abernethy等。2021)。这减少了发射CH 4的单位数量的气候影响,而在大气中没有化学自我清洁机制。1然而,随着人为来源的甲烷排放量的增加,大气中的自然自我清洁机制不足以补偿大气中CH 4浓度的增加,并且由于全球变暖而导致地质储层中甲烷释放的释放正在加速。结果,大气中的CH 4浓度从前工业化时代的0.7 ppm(每百万空气分子零件)上升到2 ppm左右,预计将进一步增加。因此,CH 4对气候变暖的贡献也在增加。此外,随着羟基自由基的新形成速率,大气中的下水道能力随着CH 4浓度的增加而降低。
解构木质素时的主要目标是实现有用的产品或中间体的高收益,同时使不良副产品的形成成立,事实证明这是具有挑战性的。11要实现木质素向低分子量化合物的高转化,因此必须打破C - C键。12,13,例如,还原性催化分数(RCF)在很大程度上切割了C-C键完整14,芳香族单体的产量限制为15-30%。可以通过在高温和高压下的催化来实现木质素中的C - C键,但成本相对高。这激发了对替代方法的探索。在先前的工作中,我们报告了一种在环境温度或接近木质素中断裂C - C键的替代方法。这种方法将硫化与芬顿化学的解构结合在一起。在芬顿反应中,Fe 2+与过氧化氢反应,产生Fe 3+和高效的羟基自由基。17 - 19个先前的工作表明,芬顿反应产生的羟基自由基有效地裂解C - C键在磺酸聚合物(如木质磺酸盐)中,20,21种磺化聚乙烯,22和聚苯乙烯硫酸盐。23 - 25通过将硫基团添加到固定铁中,将氧化量反应定位于底物,从而导致这些聚合物有效分解至低分子量产物。Fenton反应在环境温度和大气压下进行。与需要能源密集型过程和高压反应器的方法相比,这是一个优势。此外,由于芬顿反应发生在水中,少量生物相容性铁作为催化剂,因此在生物转化之前几乎不需要后期处理。可以通过调整反应条件和试剂量(铁和H 2 O 2)来控制芬顿反应中实现的解构程度。可以对低分子量产物产物进行广泛的解剖,但是在解构的程度与通过过度氧化对挥发性化合物(例如CO 2)损失的碳量之间存在贸易。过度氧化还通过更大的氧化剂H 2 O 2的消耗导致成本增加。在这里,我们探索了来自Poplar的木质素的解构,Poplar是一种相关的生物能源原料,与用离子液体过程产生的富含糖流相关的26 a a e er分离。27我们先前的工作后,我们首先将杨树木质素磺化。28接下来,我们使用Fenton反应将磺化的木质素解散,表明我们可以通过不同的试剂浓度来控制解结和重聚的程度。然后,我们探索了分解产物的生物学可用性,并证明了分解产物向喷射燃料前体Bisabolene的转化。这项工作的目标是在整个过程中展示原理证明,包括转换为产品。下面我们报告结果并讨论了几个想法,以提高过程中每个步骤的收率。
摘要。通过大气色谱扫描成像吸收光谱仪 (SCIAMACHY) 的第 6 通道测量的羟基 (OH) 短波红外辐射 (OH(4-2、5-2、8-5、9-6)) 用于推算 80 至 96 公里之间的 OH(v = 4、5、8 和 9) 浓度。利用反演的浓度模拟大气探测宽带辐射测量 (SABER) 仪器测得的 1.6 µm 处的 OH(5-3、4-2) 积分辐射和 2.0 µm 处的 OH(9-7、8-6) 积分辐射,SCIAMACHY 测量的光谱范围并未完全覆盖这些辐射。平均而言,与使用 SCIAMACHY 数据的模拟相比,SABER“未滤波”数据在 1.6 µm 处大约大 40%,在 2.0 µm 处大约大 20%。 “未滤波” SABER 数据是一种产品,它考虑了仪器宽带滤波器的形状、宽度和透射,它们不覆盖相应 OH 跃迁的完整旋转振动带。研究发现,如果使用已发布的 SABER 干涉滤波器特性和 HI-TRAN 数据库中的最新爱因斯坦系数手动执行滤波过程,SCIAMACHY 和 SABER 数据之间的差异最多可减少 50%。讨论了与模型参数不确定性和辐射校准有关的剩余差异。
尽管DMY在药物领域表现出很大的发展潜力,但由于其水溶性低,渗透性和稳定性,它在应用中面临挑战,这解释了其体内较差的生物利用度。12 DMY具有五个酚羟基,这有助于其强大的抗氧化活性,但也提高了其对不稳定性的敏感性。13 dMY在1.0 - 5.0的酸性pH值下稳定,但很容易被氧化并在中性和碱性条件下显着降解,尤其是在pH 6.0和8.0之间。13基于生物药物分类系统(BCS)标准,DMY由于其低溶解度和渗透性而被归类为IV类,为2,其绝对生物利用度接近4%。14为了解决其低生物可用性,已经开发了不同的策略,例如DMY与其他物质共同给药,以及旨在提高其稳定性,溶解度,渗透性和生物活性的新型配方。1 B因此,研究人员为DMY设计了各种新剂型,包括胃浮动配方,15个微乳液,16个纳米颗粒,17†电子补充信息(ESI)可用:质谱和NMR光谱。参见doi:https://doi.org/10.1039/d4ob01682c
全氟烷基和多氟烷基物质(PFA),导致它们在自然环境中的广泛存在。这是由于碳 - 氟键的显着稳定性,在自然环境中很难化学降解。pfass通过每天消费水和食物积累在人体中,这可能会导致潜在的健康影响,例如免疫,代谢和神经发育作用。因此,鉴于近年来其毒性和生物利益性能,全球对PFA的修复的关注越来越大。电化学晚期氧化过程(EAOPS)已开发用于修复PFASS,并已应用于废水处理中。在这些过程中,一种高强大的氧化剂羟基自由基((•)OH)是在溶液中产生的,可以氧化有机污染物。Eaops已成为一种环保和有效的治疗过程,以破坏PFAS。但是,它们的反应速度缓慢,性能稳定性差,高能量消耗和电极侵蚀阻碍了其用于水处理的商业化。本文概述了最先进的阳极材料及其通过电化学修复以及未来的推荐修补的相应降解效率。提供了有关基本原理和实验设置的全球视角,检查并讨论了不同的阳极电极,以及EAOPS对PFAS修复的挑战。
壳聚糖涂层,源自甲壳类动物壳废物,具有固有的生物相容性和生物降解性,使它们适合各种生物医学和环境应用,包括电化学生物透镜。其胺和羟基官能团为化学修饰提供了丰富的位点,以增强电荷转移动力学并提供出色的粘附,从而实现了稳健的电极涂层接口进行电分析。本研究探讨了静电驱动的化学相互作用和交联密度的作用,该密度源自不同壳聚糖(CS)和戊二醛(GA)浓度在这方面的作用。研究阴离子([Fe(CN)6] 3 - /4-),中性(FCDM 0 / +)和阳离子([RU(NH 3)6] 2 + /3 +)氧化还原探针突显了通过含有正气收费路径的壳聚糖链与Dft分析计算的壳聚糖链与壳聚糖链的影响。我们的研究揭示了适当的CH与GA比如何对交叉连接功效和结果电荷转移动力学具有较大的影响,这主要是由于电触电驱动的,这是由于电动驱动的负电荷的亚烯酰胺离子朝向带阳性充电的阳性电荷载荷的外壳粒的迁移而促进了多达20倍分析的预浓度。值得注意的是,表面工程方法允许[Fe(CN)6] 4-检测限制的两个数量级增强,从裸机的0.1 µm到适当的水凝胶修饰后,裸露的GCE降至0.2 nm。
co 2气液吸收是具有碳捕获和存储(BECC)的生物能源最相关的技术之一。目前建议在压力/温度旋转过程中碳酸钾作为最可行的BECC过程,在该过程中,它缓冲了CO 2与羟基离子的吸收反应。在整个过程中,溶剂加载在进入吸收器之前将吸收器进入高度之前从低点变化。对于工艺设备的尺寸,在任何情况下都必须知道吸收动力学。为了研究动力学参数,开发了测量设置,并在50至75°C之间测量了溶剂载荷为0.3至0.7的CO 2吸收液的溶剂溶液。通过将CO 2吸收到纯水中来测量传质系数。反应速率常数K OH的获得值显示在增加溶剂载荷时激活能的减少。通常,溶剂加载的增加会导致K OH的值增加。但是,由于较高的负载下pH值较低,可观察到的吸收率降低。一种克服碳酸钾的动力学限制的方法是吸收启动子的利用。在吸收过程中合成并测试了模仿化合物锌(II)循环的碳赤铁蛋白酶。在研究条件下,未发现Zn(II) - 循环的促进作用。
摘要:在硫酸与强氧化剂(如高锰酸钾)混合物中石墨的湿化学氧化导致用羟基烯氧化石墨烯与羟基和环氧基团形成主要官能团。然而,反应机制尚不清楚,氧气来源是一个争论的主题。理论上可以起源于氧化剂,水或硫酸。在这项研究中,我们使用18O和17O标记的试剂来实验阐明反应机理,从而确定氧官能团的起源。我们的发现揭示了硫酸的多方面作用,充当分散培养基,是钾的脱水剂,是高锰酸钾的脱水剂和intercalant。此外,它在锰氧化物旁边显着充当氧气来源。至17 O固态魔法旋转(MAS)NMR实验,我们将水排除在氧合期间直接反应伴侣。通过标记实验,我们根据机械洞察力得出结论,这可以用于合成新型石墨烯衍生物。■简介石墨烯氧化石墨烯(GO)是一种分层的二维(2D)碳材料,该碳材料源自石墨烯,具有广泛的物理和化学性质。1因此,GO一直是密集研究的主题,并在电子设备(晶体管,传感器,太阳能电池,电池等)中发现了应用。),生物医学(分子转运蛋白,抗菌表面,生物传感,生物成像等。)和纳米滤过。2
几丁质是一种可广泛可用的多糖,可生物降解,在大多数溶剂中不溶于且具有低抗原性能。几丁质纳米颗粒,例如纳米晶须和纳米纤维(CHNF)可以形成稳定且均匀的分散体。纳米颗粒悬浮液显示了粗几丁质的特性以及高纵横比,高表面积,低密度和羟基,N-乙酰基组以及其表面上残留的胺基的性质。本综述描述了纳米素制剂技术和食物应用。特别是,研究了纳米磷酸在调节脂溶性生物利用度和盐度的调节中的作用。掺入CHNF中的脂溶性维生素可用于消化。 ,透明质酸和癌症处理药物可以通过皮肤通过几壳蛋白纳米凝胶传递到靶向位置。 有趣的是,CHNF通过与味觉受体的离子结合增强了咸感感知。 在pH <7时,氨基组螯合氯化物,从而释放钠与盐受体相互作用。 这种机制可以允许食物配方的盐分减少。 此外,纳米胆料素表达表面活性剂特性并增强复合食品包装(淀粉 - 基于明胶的,明胶纳米复合材料,纳米纤维素/纳米胆素膜涂层F-SIO 2 2悬浮液)。 本文可以帮助更好地理解纳米素作为功能成分的机会。掺入CHNF中的脂溶性维生素可用于消化。,透明质酸和癌症处理药物可以通过皮肤通过几壳蛋白纳米凝胶传递到靶向位置。有趣的是,CHNF通过与味觉受体的离子结合增强了咸感感知。在pH <7时,氨基组螯合氯化物,从而释放钠与盐受体相互作用。这种机制可以允许食物配方的盐分减少。此外,纳米胆料素表达表面活性剂特性并增强复合食品包装(淀粉 - 基于明胶的,明胶纳米复合材料,纳米纤维素/纳米胆素膜涂层F-SIO 2 2悬浮液)。本文可以帮助更好地理解纳米素作为功能成分的机会。
