引言通用健康覆盖范围(UHC)是当前推动2015年全球健康目标的建筑。uhc被认为是可持续发展目标(SDG)的中心支柱,也是确保在全球范围内获得医疗保健股权的基本要素。1投资设备齐全的医疗保健系统是实现UHC目标的理想和必要条件。不管低收入和中等收入国家(LMIC)常见的现有稀缺资源,这些国家都必须充分而连续地提供更广泛的保健服务,这些服务价格合理,可及可及可用于改善健康结果。在其他地方进行了成功过渡到UHC的健康系统设计的不同方面,估计了UHC时代在UHC时代使用低质量健康服务的多余死亡率。3,而来自不同领域的研究
• 简介 • AfDC 使命宣言 • 项目 • 一般性讨论 16:00 – 16:30 茶歇 16:30 – 17:30 I. 欢迎和开幕会议 召集人 Gladys Maestre (UTRGV) 和 Raj Kalaria (英国) 致欢迎辞,随后由 Adesola Ogunniyi (AfDC)、Julius Ogeng'o 致开幕词(每人约 5 分钟) (内罗毕大学)、Mercy Njuguna(肯尼亚卫生部)、Claire Sexton(AA,美国)、Zul Merali(BMI AKU,肯尼亚)、Aida S-Gonzalez(WFN ADCD,英国)、Elizabeth Mutungu(ADOK,肯尼亚)、David Ndetei(AFRIMEB-当地主持人,肯尼亚)Andrew Singelton 和 Sara Bandres Ciga,阿尔茨海默病和相关痴呆症中心 (CARD), NIA、NIH、美国17:30 – 18:30 主题演讲 I Richard Brown,加拿大达尔豪斯大学 揭开大脑的奥秘:Brenda Milner 的贡献
例如,图 1 显示,在尼日利亚,在六个重叠调查期中的五个期间,接受度估计值相差 17 到 22 个百分点。即使在使用相同访谈模式(互联网)的调查中,2021 年第 2 季度的估计值也相差 18 个百分点。只有在一个重叠调查期内,接受度估计值相对接近:2021 年第 4 季度,使用呼叫列表招募和 CATI 访谈的调查(呼叫列表-CATI)的估计值与使用社交媒体招募和互联网访谈的调查(社交媒体-互联网)的估计值相差在 4 个百分点以内。2021 年第 2 季度的情况并非如此,当时这些调查的估计值相差 16 个百分点,这表明除了招募方法和访谈模式外,调查时间也可能影响接受度估计值。
Artishotter Emma CambierSébastienChary Aline aline Servane Houin。韦伯·帕敏(Weber Pamine)
硅光子学(SIPH)正在驱动几个应用领域,从而使高性能计算系统中的超快速芯片尺度通信到人工智能(AI)硬件加速器中的能效计算[1]。一个集成SIPH的系统需要采用光子和电子子系统之间的接口,这可能导致几乎没有探索的新的和不可避免的安全漏洞。已经提出了一些方法,以通过采用安全性增强技术[2],[3]来解决光电系统中的潜在安全漏洞,或者通过提供专门的硬件块来创建加密种子[4]。但是,它们缺乏光电系统中的弹性和易于部署。本文提出了一个框架,以增强光电系统中的硬件安全性。我们的解决方案利用光刻过程的独特特征来从SIPH子系统中创建独特的加密密钥,而无需专用的SIPH块(即使用架构中的SIPH节点)。此外,我们提供了一个在线入侵检测系统(IDS)以进行攻击检测。在不同的攻击场景下获得的仿真结果,并靶向光电结构(例如,光子AI加速器)显示了100%检测到的测试用例。增强的节点调整提高了光学信号完整性。
摘要 - 无孔的能量收获设备是一类新的嵌入式系统,可从存储在环境友好的电容器中的环境能量运行,并保证持久的持久,无维护的操作。由于紧密的能量构成,这些设备经常采用电压转换器和专用的集成电路(ICS),以最大程度地传输能量收割机,存储电容器和负载之间。正如我们在本文中所显示的那样,这种转换器电路的选择和配置很重要,但是非平凡,因为它们的性能高度取决于能量收集条件。因此,我们提供了五个现成的能源收集IC的模型,并将它们集成到无电池系统的开源模拟器中:这使从业人员和研究人员可以方便地探索设计权衡并预测可实现的性能。此外,我们使用这些模型对不同转换器体系结构进行系统比较,并得出具体建议。
2 Google Quantum AI,加利福尼亚州戈利塔 超导量子处理器是最先进的量子计算技术之一。基于这些设备的系统已经实现了后经典计算 [1] 和量子纠错协议的概念验证执行 [2]。虽然其他量子比特技术采用自然产生的量子力学自由度来编码信息,但超导量子比特使用的自由度是在电路级定义的。当今最先进的超导量子处理器使用 transmon 量子比特,但这些只是丰富的超导量子比特之一;在考虑大规模量子计算机的系统级优化时,替代量子比特拓扑可能会证明是有利的。在这里,我们考虑对 Fluxonium 量子比特进行低温 CMOS 控制,这是最有前途的新兴超导量子比特之一。图 29.1.1 比较了 transmon 和 Fluxonium 量子比特。 transmon 是通过电容分流约瑟夫森结 (JJ) 实现的,是一种非线性 LC 谐振器,其谐振频率为 f 01,非谐性分别在 4-8GHz 和 200-300MHz 范围内。transmon 有限的非谐性约为 5%,限制了用于驱动量子比特 f 01 跃迁的 XY 信号的频谱内容,因为激发 f 12 跃迁会导致错误。以前的低温 CMOS 量子控制器通过直接 [3,4] 或 SSB 上变频 [5,6] 复杂基带或 IF 包络(例如,实施 DRAG 协议)生成光谱形状的控制脉冲;这些设备中高分辨率 DAC 的功耗和面积使用限制了它们的可扩展性。fluxonium 采用额外的约瑟夫森结堆栈作为大型分流电感。这样就可以实现 f 01 频率为 ~1GHz 或更低的量子比特,而其他所有跃迁频率都保持在高得多的频率(>3GHz,见图 29.1.1)[7]。与 transmon 相比,fluxonium 的频率较低且非谐性较高,因此可以直接生成低 GHz 频率控制信号,并放宽对其频谱内容的规范(但需要更先进的制造工艺)。在这里,我们利用这一点,展示了一种低功耗低温 CMOS 量子控制器,该控制器针对 Fluxonium 量子比特上的高保真门进行了优化。图 29.1.2 显示了 IC 的架构。它产生 1 至 255ns 的微波脉冲,具有带宽受限的矩形包络和 1GHz 范围内的载波频率。选择规格和架构是为了实现优于 0.5° 和 0.55% 的相位和积分振幅分辨率,将这些贡献限制在平均单量子比特门错误率的 0.005%。它以 f 01 的时钟运行,相位分辨率由 DLL 和相位插值器 (PI) 实现,而包络精度则由脉冲整形电路实现,该电路提供粗调振幅和微调脉冲持续时间(与传统控制器不同,使用固定持续时间和精细幅度控制)。数字控制器和序列器可播放多达 1024 步的门序列。图 29.1.2 还显示了相位生成电路的示意图。DLL 将这些信号通过等延迟反相器缓冲器 (EDIB) 后,比较来自电压控制延迟线 (VCDL) 的第一个和第 31 个抽头的信号。这会将 CLK[0] 和 CLK[30] 锁定在 180°,并生成 33 个极性交替的等延迟时钟信号。使用 CLK[30] 而不是 CLK[32] 来确保在 PFD 或 EDIB 不匹配的情况下实现全相位覆盖,这可能导致锁定角低于 180°。一对 32b 解复用器用于选择相邻的时钟信号(即 CLK[n] 和 CLK[n+1]),开关和 EDIB 网络用于驱动具有可选极性的 PI。 PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。